Amplifikasi DNA Kandidat Gen Kuda Pacu Sumba

DNA Amplifications of Candidate Gene Sumba’ Racing Horses

  • Cynthia Dewi Gaina Nusa Cendana University
  • Frits B. H. Francis Fakultas Kedokteran Hewan Universitas Nusa Cendana
Keywords: Amplification, Gene, Horse, Racing, Sumba

Abstract

The Sumba horse is one of the local horses in Indonesia which is known as racing horse Several candidate genes are known to influence the outward characteristics of the Sumba racehorse, which play main role in the development of the horse's muscles from embryo to adulthood. This research aims to identify candidate genes for the Sumba racehorse in stallion and mares. Blood samples from 5 stallions and 5 mares were collected and analyzed. The method used in this research was by using polymerase chain reaction (PCR), electrophoresis and DNA sequencing. The results of DNA amplification fragments at a temperature of 600c showed a fragment size of 463 bp. A total of 10 samples were sequenced on the PCR machine. The forward primer was 5'-TATTCTTCTTGGGAGGGAGGACTACT-3 'and reverse primer was 5'-GCAAGTAATTAGCACAAAAATTTGAATG-3'. The obtained data was analyzed using the Basic Local Alignment Sealing Tool (BLAST). Result of this study could be used as an initial identification of candidate genes for racing activity in stallion and mares that can complement the selection of racing horses.

References

Aiello, D., Patel, K., & Lasagna, E. (2018). The myostatin gene: an overview of mechanisms of action and its relevance to livestock animals. Animal genetics, 49(6), 505-519.

Apte, A., & Daniel, S. (2009). PCR primer design. Cold Spring Harbor Protocols, 2009(3), pdb-ip65.

Batubara, A. (2017). Ekspresi gen myostatin dan aplikasinya pada program pemuliaan kambing. Jurnal Wartazoa, 27, 89-94.
Beuzen, N. D., Stear, M. J., & Chang, K. C. (2000). Molecular markers and their use in animal breeding. The Veterinary Journal, 160(1), 42-52.

Castejón, F., Rubio, D., Tovar, P., Vinuesa, M., & Riber, C. (1994). A comparative study of aerobic capacity and fitness in three different horse breeds (Andalusian, Arabian and Anglo‐Arabian). Journal of Veterinary Medicine Series A, 41(1‐10), 645-652.

Cothran, E., Juras, R., & Macijauskiene, V. (2005). Mitochondrial DNA D-loop sequence variation among 5 maternal lines of the Zemaitukai horse breed. Genetics and Molecular Biology, 28(4), 677-681.

Gaina, C. D., & Foeh, N. D. (2018). Studi Performa Umum Tubuh dan Status Fisiologis Kuda Sumba. Jurnal Kajian Veteriner, 6(2), 38-44.

Gaina, C. D., Widi, A. Y., & Saputra, A. (2020). Age-Sex Related in Hematological Values of Sandalwood Pony Horses (Equus caballus) in East Sumba, NTT. Journal of Veterinary and Animal Sciences, 3(2).

Haruna, I. L., Ekegbu, U. J., Ullah, F., Amirpour-Najafabadi, H., Zhou, H., & Hickford, J. G. (2020). Genetic variations and haplotypic diversity in the Myostatin gene of New Zealand cattle breeds. Gene, 740, 144400.

Hill, E. W., McGivney, B. A., Gu, J., Whiston, R., & MacHugh, D. E. (2010). A genome-wide SNP-association study confirms a sequence variant (g. 66493737C> T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses. BMC genomics, 11(1), 1-10.
Hill, E. W., McGivney, B. A., Rooney, M. F., Katz, L. M., Parnell, A., & MacHugh, D. E. (2019). The contribution of myostatin (MSTN) and additional modifying genetic loci to race distance aptitude in Thoroughbred horses racing in different geographic regions. Equine veterinary journal, 51(5), 625-633.

Kim, H., Lee, T., Park, W., Lee, J. W., Kim, J., Lee, B. Y., ... & Kim, H. (2013). Peeling back the evolutionary layers of molecular mechanisms responsive to exercise-stress in the skeletal muscle of the racing horse. DNA research, 20(3), 287-298.

Kumar, V. (2015). Physiological responses and molecular signatures of exercise in horses. Sci Works Ser C Vet Med, 61, 201-210.

Lee, P. L. (2017). DNA amplification in the field: move over PCR, here comes LAMP.

Martinez, R., Rocha, J. F., Bejarano, D., Gomez, Y., Abuabara, Y., & Gallego, J. (2016). Identification of SNPs in growth-related genes in Colombian creole cattle. Genet. Mol. Res, 15(3), gmr15038762.

McGivney, B. A., Browne, J. A., Fonseca, R. G., Katz, L. M., MacHugh, D. E., Whiston, R., & Hill, E. W. (2012). MSTN genotypes in Thoroughbred horses influence skeletal muscle gene expression and racetrack performance. Animal genetics, 43(6), 810-812.

Othman, O. E., Mahrous, K. F., & Shafey, H. I. (2017). Mitochondrial DNA genetic variations among four horse populations in Egypt. Journal of Genetic Engineering and Biotechnology, 15(2), 469-474.

Petersen, J. L., Valberg, S. J., Mickelson, J. R., & McCue, M. E. (2014). Haplotype diversity in the equine myostatin gene with focus on variants associated with race distance propensity and muscle fiber type proportions. Animal genetics, 45(6), 827-835.

Pereira, G. L., de Matteis, R., Regitano, L. C., Chardulo, L. A. L., & Curi, R. A. (2016). MSTN, CKM, and DMRT3 gene variants in different lines of Quarter Horses. Journal of Equine Veterinary Science, 39, 33-37.

Rooney, M. F., Hill, E. W., Kelly, V. P., & Porter, R. K. (2018). The “speed gene” effect of myostatin arises in Thoroughbred horses due to a promoter proximal SINE insertion. PLoS One, 13(10), e0205664.
Saunders, G. C., & Parkes, H. C. (1999). Quality in the analytical molecular biology laboratory. Analytical Molecular Biology: quality and validation, 9-28.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, 30(12), 2725-2729.

Węglarz, A., Balakowska, A., Kułaj, D., & Makulska, J. (2020). Associations of CAST, CAPN1 and MSTN genes polymorphism with slaughter value and beef quality. Annals of Animal Science, 1(ahead-of-print).

Viluma, A. (2012). Polymorphism in myostatin gene and athletic performance in Nordic horse breeds (Master's thesis, Norwegian University of Life Sciences, Ås).

Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012). Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC bioinformatics, 13(1), 1-11.
Published
2021-03-26
How to Cite
Gaina, C., & Francis, F. (2021). Amplifikasi DNA Kandidat Gen Kuda Pacu Sumba. JURNAL KAJIAN VETERINER, 9(1), 13-20. https://doi.org/10.35508/jkv.v9i1.3901

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.