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Abstract: The prevalence of measles as an infectious disease has been of major concern to the govern-
ment health practitioners over the world. This paper intends to investigate the effect of vaccination
as a control measure to control the incidence of it means. The basic reproduction number, local and
global stabilities of the disease at equilibrium, sensitivity was obtained. The numerical simulation
via variational iteration method was carried out. The result clearly shows that proper procurement
of vaccine and its implementation is a good control strategy to reduce the rapid spread of the disease.
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1. Introduction

In recent times, the prevalence of measles as an epidemic disease cannot be overemphasized by
government of nations as its spread over the world is alarming. How and what has brought us to this
point is a question for all. Mathematical model is a description of a system using mathematical con-
cepts and language. The process of developing a mathematical model is termed mathematical mod-
eling. These are used in the natural sciences and engineering disciplines, as well as in non-physical
systems such as the social sciences. Measles is one of the common bacterial infectious diseases with
rapid contact rate within 14 days by [1]. Humanity has the ability to control the environment within
which it resides. In day-to-day life, humans interact with different beings co-habiting their world by
[2], these interactions can sometimes be harmful or destructive to living beings and humans, and as a
result, humanity has developed techniques, weapons and sophisticated technological instruments
to help reduce the threat [3]. Despite technological advances, we are continuously exposed to new
challenges, and constantly face biological threats within our environment in [4, 5]. Viruses are one
such threat. Invisible to the human eye, they live in the air, soil, and water and on material surfaces
and are responsible for a number of diseases that kill millions of people in [6]. Most recently, the rise
of a new strain of corona virus SARS-COV-2 developed into a pandemic that claimed over 200,000
lives between its first documented case in December 2019 in Wuhan, China, and May 1, 2020.by [7–9].
More so, the basic reproduction number as the threshold which governs the stability i.e. R0 < 1 and
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unstable if R0 > 1 of the disease at equilibrium by [10]. R0 Is a prominent tool in the outbreak of a
disease which projects the prevalence of this overtime as this will enable the predominant and trajec-
tory with the rise or fall of the disease in the population by [11–13]. The local stability at disease free
equilibrium is asymptotically stable or otherwise at an invariance of (R0 < 1 or R0 > 1) in [14]. To
combat these invisible enemies, we rely on the study of their behaviors in laboratories, analysis, and
prediction, to perform the analysis and prediction, observed facts are converted into models using
mathematical tools, including, differentiation, integration and statistical approaches. These models
are analyzed and solved analytically or numerically for prediction using some obtained parameters
and initial conditions. When dealing with large populations, as in the case of measles, compart-
mental mathematical models are used. In the deterministic model, individuals in the population are
assigned to different subgroups, each representing a specific stage of the epidemic by [15]. The nu-
merical simulation results obtained helps to facilitate that vaccination will help to suppress the rapid
spread also project a good and vital role to more research and control policies to curb the spread of
the disease.

2. Materials and method

2.1. Model description

Let N(t) be the total population considered. The sets of subpopulation as susceptible class S(t),
vaccinated class V (t), Exposed class E(t), infected class I(t) and also Recovered class in the popu-
lation R(t) representing an SV EIR epidemic model. θ The number of an individual coming into
the population, α vast spread of measles aided by its transmission factors through contact. The
progression rate of an exposed individuals who have contracted the disease into the infected pop-
ulation γ can be reduced through vaccinating such initial set of subpopulation β1. Level of re-
sponse to treatment is determined by the waning rate β2 , and if the immunity strength is such
weak leading to death δ or natural phenomenon µ. Parameter representation of each of the compart-
ments state variables as illustrated in table 2.1, based on this consideration, the total population is
N(t) = S(t) + V (t) + (E) + (I) + (R).
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Table 2.1: Descriptions, Parameter, Values and References.

Description Parameters Values References
Recruitment rate θ 0.7 Garba et al, [2]
Recovery rate ρ 0.0375 Taiwo et al, [4]
Progression rate from exposed to infected class σ 0.0001 Giffrin [3], Peter et al, [9]
Rate of vaccinating susceptible individuals β1 0.2 Mossong et al, [13]
Contact rate of infection α 0.885 Kolawole et al, [1]
Vaccine wane rate β2 0.013 Peter et al, [6]
Disease induced death rate δ 0.038 Ayoola et al, [10]
Natural death µ 0.02 Shinta et al, [7]

1.1 Proposed Modifications
The proposed compartmental based model for analyzing the dynamics of measles with vacci-
nation as a control strategy, govern model is given by the system of linear ordinary differential
equations below:

dS

dt
= θ − αSI − β1S + β2V − µS

dV

dt
= β1S − (β2 + µ)V

dE

dt
= αSI − (µ+ σ)E

dI

dt
= σE − (µ+ δ + ρ)I

dR

dt
= ρI − µR

(2.1)

Subject to the following initial conditions
S(0) = s0, V (0) = v0, E(0) = e0, I(0) = i0, R(0) = r0 ≥ 0.

1.2 Existence of Solution
Consider the compartment of the system of equations on the population over the region

ψ = {S(t), V (t), E(t), I(t), R(t),∈ ℜ5
+} (2.2)

The derivatives obtained as;

dN(t)
dt = d

dt(S(t) + V (t) + E(t) + I(t) +R(t))
dN(t)
dt = dS

dt + dV
dt + dE

dt + dI
dt

dR
dt

dN(t)
dt = θ−αSI−β1S+β2V −µS+β1S− (β2+µ)V +αSI− (µ+σ)E+σE− (µ+ δ+ρ)I−µR

dN(t)

dt
= θ − µ(S + V + E + I +R)− δI (2.3)

dN(t)
dt ≤ θ − µN C is a constant of integration

N(t) = θ
µ + Cℓµt, by the initial condition at t = 0

C = N(0)− θ
µ

N(t)ℓµt = θ
µℓ

µt + C
Taking the initial time t and N(t) such that;

lim
t→∞

N(t) ≤ lim
t→∞

[
θ

µ
+

(
N(0)− θ

µ
ℓ−µt

)]
=
θ

µ
(2.4)
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If N(0) ≤ θ
µ , then N(t) ≤ θ

µ . This justification is considered enough for the dynamics of the
model the domain ℜ5

+. In this region the model can be considered to be mathematically and
epidemiologically well posed. However, the nonnegative solution set of the model equations
enters the feasible region, ψ which is a positively invariant set.

1.3 Positivity of the model formation
Consider all compartments of equation (1) at equilibrium in its initial conditions.
Theorem 2.1.

ψ = {S(t), V (t), E(t), I(t), R(t),∈ ℜ5
+} as

S(0) = s0 > 0, V (0) = v0 > 0, E(0) = e0o > 0, I(0) = i0 > 0, R(0) = r0 > 0, t ≥ 0 (2.5)

Then:

Proof. from the system of differential equation (1),

dS

dt
= θ − αSI − β1S + β2V − µS(t)

dS

dt
≥ −(β1 + µ)S(t)

dS

dS(t)
≥ −(β1 + µ)dt∫

dS

dS(t)
≥ −(β1 + µ)

∫
dt

S(t) ≥ S0e
−(β1+µ)t ≥ 0

(2.6)

Similarly for the second compartment,

dV

dt
= β1S − (β2V + µ)V (t)

dV

dt
≥ −(β2 + µ)V (t)

dV

dV (t)
≥ −(β2 + µ)dt∫

dV

dV (t)
≥ −(β2 + µ)

∫
dt

V (t) ≥ V0e
−(β2+µ)t ≥ 0

(2.7)

Also for the third compartment this yield;

dE

dt
= αSI − (µ+ σ)E(t)

dE

dt
≥ −(µ+ σ)E(t)

dE

dE(t)
≥ −(µ+ σ)dt∫

dE

dE(t)
≥ −(µ+ σ)

∫
dt

E(t) ≥ E0e
−(µ+σ)t ≥ 0

(2.8)
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From the fourth, we obtain that;

dI

dt
= σE − (µ+ δ + ρ)I(t)

dI

dt
≥ −(µ+ δ + ρ)I(t)

dI

dI(t)
≥ −(µ+ δ + ρ)dt∫

dI

dI(t)
≥ −(µ+ δ + ρ)

∫
dt

I(t) ≥ I0e
−(µ+δ+ρ)t ≥ 0

(2.9)

Lastly we obtain,

dR

dt
= ρI − µR(t)

dR

dt
≥ −µR(t)

dR

dR(t)
≥ −µdt∫

dR

dR(t)
≥ −µdt

R(t) ≥ R0e
−µt ≥ 0

(2.10)

Hence, this proofs the positivity of the theorem as a solution to the model.

1.4 Model Analysis

1.4.1 Disease free equilibrium state
At disease free equilibrium point, there is no outbreak of measles, S ̸= 0, I = 0, as ob-
tained;

θ − αSI − β1S + β2V − µS = 0

β1S − (β2 + µ)V = 0

αSI − (µ+ σ)E = 0

σE − (µ+ δ + ρ)I = 0

ρI − µR = 0


(2.11)

The disease free equilibrium

(E1) = (S0, V0, E0, I0, R0) =

(
θ(β2 + µ)

µ(β1 + β2 + µ)
,

θβ1
µ(β1 + β2 + µ)

, 0, 0, 0

)
(2.12)

1.4.2 Endemic equilibrium point
Let Ee = (S•, V •, E•, I•, R•) as Endemic Equilibrium where I ̸= 0 Consider the system of
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equation (1) at equilibrium point whose results are;

S• =
(µ+ σ)(µ+ δ + ρ)

ασ

V • =
β1[(µ+ σ)(µ+ δ + ρ)]

ασ

E• =
θσα+ (µ+ σ)(µ+ δ + ρ)[β1β2 − (µ+ β1)]

(µ+ σ)ασ2

I• =
θσα+ (µ+ σ)(µ+ δ + ρ)[β1β2 − (µ+ β1)]

(µ+ σ)(µ+ δ + ρ)ασ

R• =
ρ(θσα+ (µ+ σ)(µ+ δ + ρ)[β1β2 − (µ+ β1)])

µ(µ+ σ)(µ+ δ + ρ)ασ

(2.13)

1.4.3 Basic Reproduction Number.
There are two disease states but only one to create new infection. Exposed and Infected
compartments of the model are connected with from equation (1). This denote the num-
ber of secondary infection caused as a result of infected individuals in a population also
known as the threshold parameter which governs the rapid spread of a disease in a popu-
lation, where R0 = G = ρ(F × V −1) via using next generation matrix as obtained below,

dE

dt
= αSI − (µ+ σ)E

dI

dt
= σE − (µ+ δ + ρ)I

(2.14)

Considering the disease compartments where R0 = F × V −1 . The transition and trans-
mission matrix are obtained via partial derivatives of f and v evaluated at the disease free
equilibrium.

Fi =

(
∂fi(xi)

∂xj

)
, Vi =

(
∂vi(xi)

∂xj

)
, i, j = 1, ..., n ∀n <∞ (2.15)

f =

(
αSI
0

)
, v =

(
(µ+ σ)E

−σE + (µ+ δ + ρ)I

)
F =

(
0 αθ(β2+µ)

µ[β1+β2+µ]

0 0

)
, V =

(
(µ+ σ) 0
−σ (µ+ δ + ρ)

)
V −1 =

(
1

(µ+σ)
σ

(µ+σ)(µ+δ+ρ)

0 1
(µ+δ+ρ)

)
. Since R0 = F × V −1

R0 =

(
0 αθ(β2+µ)

µ[β1+β2+µ]

0 0

)(
1

(µ+σ)
σ

(µ+σ)(µ+δ+ρ)

0 1
(µ+δ+ρ)

)
(2.16)

R0 =
αθ(β2 + µ)

µ[β1 + β2 + µ](µ+ δ + ρ)
(2.17)

The invariance of the dominant Eigen-value is the basic reproduction number.

2.6 Model stability.

2.6.1 Local stability of disease free equilibrium
Proposition 1: The disease free equilibrium of the proposed epidemic model is locally

21



Kolawole et al.

asymptotically stable if R0 < 1 otherwise unstable if R0 > 1 Local stability at disease free
of the model is deduced for R0 < 1 and unstable at R0 > 1 , invariantly as obtained by
Jacobian matrix relatively as |JE(0) − λI| = 0.

J(E1) =


−(β1 + µ) β2 0 −α 0

β1 −(β2 + µ) 0 0 0
0 0 −(σ + µ) 0 0
0 0 σ −(µ+ δ + ρ) 0
0 0 0 ρ −µ


(2.18)

∣∣∣∣∣∣∣∣∣∣
−(β1 + µ)− λ β2 0 −α 0

β1 −(β2 + µ)− λ 0 0 0
0 0 −(σ + µ)− λ 0 0
0 0 σ −(µ+ δ + ρ)− λ 0
0 0 0 ρ −µ− λ

∣∣∣∣∣∣∣∣∣∣
= 0

Respectively the Eigen values are obtained as;

λ = −(β1 + µ),−(β2 + µ),−(σ + µ),−(µ+ δ + ρ),−µ (2.19)

Since all are negatively invariant, therefore they are locally asymptotically stable.
2.6.2 Local stability of endemic equilibrium

Proposition: The endemic equilibrium of the proposed model is locally asymptotically
stable if R0 < 1 unstable otherwise. Let S = x + S∗, V = y + V ∗, E = z + E∗, I =
a+ I∗, R = b+R∗

dx

dt
= θ − α(x+ S∗)(a+ I∗)− β1(x+ S∗) + β2(y + V ∗)− µ(x+ S∗)

dy

dt
= β1(x+ S∗)− (β2 + µ)(y + V ∗)

dz

dt
= α(x+ S∗)(a+ I∗)− (µ+ σ)(z + E∗)

da

dt
= σ(z + E∗)− (µ+ δ + ρ)(a+ I∗)

db

dt
= ρ(a+ I∗)− µ(b+R∗)

(2.20)

Via linearization of state variables, it is obtained that;

dx

dt
= −αxa− β1x+ β2y − µx+ higherorder + non− linear

dy

dt
= β1x− (β2 + µ)y + higher order + non− linear

dz

dt
= −αxa− (µ+ σ)z + higher order + non− linear

da

dt
= σz − (µ+ δ + ρ)a+ higher order + non− linear

db

dt
= ρa− µb+ higher order + non− linear

(2.21)
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The Jacobian of the resulting linearization have it that: |JE(0) − λI| = 0.

JE∗ =


−(αa+ β1 + µ) β2 0 −αx 0

β1 −(β2 + µ) 0 0 0
αa 0 −(µ+ σ) 0 0
0 0 σ −(µ+ δ + ρ) 0
0 0 0 ρ −µ


(2.22)

Consider the respective Eigen values via its characteristic equation as obtained below
|JE1 − λiI| = 0.∣∣∣∣∣∣∣∣∣∣
−(αa+ β1 + µ)− λ β2 0 −αx 0

β1 −(β2 + µ)− λ 0 0 0
αa 0 −(µ+ σ)− λ 0 0
0 0 σ −(µ+ δ + ρ)− λ 0
0 0 0 ρ −µ− λ

∣∣∣∣∣∣∣∣∣∣
= 0

(2.23)
The resulting Eigen-value become,
−(αa+ β1 + µ)− λ− (β2 + µ)− λ− (µ+ σ)− λ− (µ+ δ + ρ)− λ− µ− λ

If p = −(αa+ β1 + µ), q = −(β2 + µ), r = −(µ+ σ), s = −(µ+ δ + ρ), t = −µ
(p− λ)(q − λ)(r − λ)(s− λ)(t− λ) = 0

(2.24)

Algebraically, it is obtained that,
λ5 −

(
t + (r + s) + (p + q)

)
λ4 +

(
(p + q)(r + s) + pq + rs

)
(1 + t)λ3 −

(
pq(r + s) + rs(p +

q)
)
(1 + s)λ2 + s

(
pq(r + s) + rs(p+ q)

)
λ− pqrst = 0

With the invariance of the Eigen values it is said to be locally asymptotically stable
2.6.3 Global stability of disease free equilibrium

The Lyapunov approach to obtain global asymptotic stability of the proposed model at
disease free equilibrium whose derivatives are obtained with respect to time is illustrated
below;
V (t, S, V,E, I, R) = CI1 + CI2 (2.25)

dV

dt
= C1I

•
1 + C2I

•
2 (2.26)

= C1[αSI − (µ+ σ)I1] + C2[σI1 − (µ+ δ + ρ)I2]
= C1αSI − C1(µ+ σ)I1 + C2σI1 − C2(µ+ δ + ρ)I2
≤ [C2σ − C1(µ+ σ)]I1 + [C1αS − C2(µ+ δ + ρ)]I2
dV
dt ≤ [C2σ − C1(µ+ σ)]I1 +

[
C1

αθ(β2+µ)
µ[β1+β2+µ] − C2(µ+ δ + ρ)

]
I2 ≤ N,S

If C1 =
1

(µ+ σ)
, C2 =

αθ(β2 + µ)

µ[β1 + β2 + µ](µ+ σ)(µ+ δ + ρ)
(2.27)

dV

dt
≤
[

αaθ(β1 + µ)

µ[β1 + β2 + µ](µ+ σ)(µ+ δ + ρ)
− (µ+ σ)

(µ+ σ)

]
I+[

β(1− c)∧
µ(µ+ ϵ+ τ1)

− ∧(1− c)β(µ+ γ + d+ τ2)

µ(µ+ ϵ+ τ1)(µ+ γ + d+ τ2)

]
I

dV

dt
≤ η

[
αθ(β2 + µ)

µ[β1 + β2 + µ](µ+ δ + ρ)
− 1

]
I

dV

dt
≤ η(R0 − 1)

(2.28)
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Imperatively to note that V • = 0 only when I = 0, the substitution of I = 0 into the
model equation shows that at equilibrium η > 0 at t → ∞. Based on LaSalle’s invariance
principle it is globally asymptotically stable whenever R0 > 1.

2.7 Sensitivity analysis of the reproductive ratio
The test for the sensitivity of R0 is with respect to all the parameters in R0. The normalized
forward sensitivity index is defined as shown below:

∂R0

∂ρ
× ρ

∂R0
=
ρ(µ+ δ + ρ)

(µ+ δ)

∂R0

∂θ
× θ

∂R0
= 1

∂R0

∂α
× α

∂R0
= 1

∂R0

∂β1
× β1
∂R0

=
β1[β1 + β2 + µ]

(β2 + µ)

∂R0

∂β2
× β2
∂R0

=
µβ2[β1 + β2 + µ]

(β1 + µ)(β2 + µ)

∂R0

∂µ
× µ

∂R0
=
β2µ

2[β1 + β2 + µ](µ+ δ + ρ)

(β1 + β2)(β2 + µ)(δ + ρ)

∂R0

∂δ
× δ

∂R0
=
δ(µ+ δ + ρ)

µ+ ρ

(2.29)

Tabular representation of parameter and indices of sensitivity analysis deduced from their ini-
tial values are as follows:

Table 2.2: Parameters of sensitivity indices

Parameters Sensitivity Indices (R0)
ρ 0.0157663
β1 2.30704e−3

θ 1.0000000
α 1.0000000
β2 1.29925e3

δ 0.0207777
µ 4.8814e−5

2.8 Numerical simulation
The numerical simulation for the epidemic model formulation via variational iteration method,
constructing an iteration formula for each compartment adopted through maple software thus,
iteratively obtained as;

Sn+1 = Sn(t)−
∫ t

0

(
d

dτ
Sn(τ)− θ − α · Sn(τ) · In(τ)− β1 · Sn(τ) + β2 · Vn(τ)− µ · Sn(τ)

)
dτ

Vn+1 = Vn(t)−
∫
0

(
d

dτ
Vn(τ)− β1 · Sn(τ)− (β2 + µ) · Vn(τ)

)
dτ

En+1 = En(t)−
∫ t

0

(
d

dτ
En(τ)− α · Sn(τ) · In(τ)− (µ+ σ) · En(τ)

)
dτ

In+1 = In(t)−
∫ t

0

(
d

dτ
In(τ)− σ · En(τ)− (µ+ δ + ρ) · In(τ)

)
dτ

Rn+1 = Rn(t)−
∫ t

0

(
d

dτ
Rn(τ)− ρ · In(τ)− µ ·Rn(τ)

)
dτ

(2.30)
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At n = 0 the first iteration yield;
S1(t) = (θ + αs0m0 + β1s0 − β2v0 + µs0)t+ s0

V1(t) = (β1s0 + (β2 + µ)v0)t+ v0

E1(t) = (αs0m0 + (µ+ σ)e0)t+ e0

I1(t) = (αe0 + (µ+ δ + ρ)m0)t+m0

R1(t) = (ρm0 + µr0)t+ r0

(2.31)

At n = 1, with an initial condition;
ic = {S1(t) =

(
θ + αs0m0 + β1s0 − β2v0 + µs0

)
t+ s0, S1(τ) =

(
θ + αs0m0 + β1s0 − β2v0 + µs0

)
t+ s0,

V1(t) =
(
β1s0 + (β2 + µ)v0

)
t+ v0, V1(τ) =

(
β1s0 + (β2 + µ)v0

)
t+ v0,

E1(t) =
(
αs0m0 + (µ+ σ)e0

)
t+ e0, E1(τ) =

(
αs0m0 + (µ+ σ)e0

)
t+ e0

I1(t) =
(
αe0 + (µ+ δ + ρ)m0

)
t+m0, I1(τ) =

(
αe0 + (µ+ δ + ρ)m0

)
t+m0

R1(t) =
(
ρm0 + µr0

)
t+ r0, R1(t) =

(
ρm0 + µr0

)
t+ r0, R1(τ) =

(
ρm0 + µr0

)
t+ r0}

(2.32)

Its second iteration iteratively yields;
S2(t) = collect (eval (Sn+1, ic), t);

V2(t) = collect (eval (Vn+1, ic), t);

E2(t) = collect (eval (En+1, ic), t);

I2(t) = collect (eval (In+1, ic), t);

R2(t) = collect (eval (Rn+1, ic), t);

(2.33)

S2(t) = α
(
θ + αs0m0 + β1s0 − β2v0 + µs0

)(
σe0 + (µ+ δ + ρ)m0

)
t3 +

(
− β2(β1s0 + (β2 + µ)v0

)
+β1

(
θ + αs0m0 + β1s0 − β2v0 + µs0

)
+ αs0

(
σe0 + (µ+ δ + ρ)m0

)
+α
(
θ + αs0m0 + β1s0 − β2v0 + µs0

)
m0 + µ

(
θ + αs0m0 + β1s0 − β2v0 + µs0

))
t2

+
(
2θ + 2αs0m0 + 2β1s0 − 2β2v0 + 2µs0

)
t+ s0

V2(t) =
(
β1(θ + αs0m0 + β1s0 − β2v0 + µs0) + (β2 + µ)(β1s0 + (β2 + µ)v0)

)
t2

+(2β1s0 + 2(β2 + µ)v0)t+ v0

E2(t) = α
(
θ + αs0m0 + β1s0 − β2v0 + µs0

)(
σe0 + (µ+ δ + ρ)m0

)
t3

+
(
αs0(αe0 + (µ+ δ + ρ)m0

)
+ α

(
θ + αs0m0 + β1s0 − β2v0 + µs0

)
m0

+(µ+ σ)
(
αs0m0 + (µ+ σ)e0))t

2 + (2αs0m0 + 2(µ+ σ)e0)t+ e0

I2(t) = α
(
αs0m0 + (µ+ σ)e0

)
+ (µ+ δ + ρ)

(
σe0 + (µ+ δ + ρ)m0

)
t2

+(2σe0 + 2(µ+ δ + ρ)m0)t+m0

R2(t) =
(
ρ(σe0 + (µ+ σ)m0) + µ(ρm0 + µr0)

)
t2 + (µ+ δ + ρ)

(
σe0 + (µ+ δ + ρ)m0

)
t2

+(2ρm0 + 2µr0)t+ r0

(2.34)

Evaluating at initial conditions;
N = 722, s0 = 500, v0 = 120, e0 = 65, i0 = 23, r0 = 14, β1 = 0.0021, β2 = 0.0013, α = 0.0017,

σ = 0.0011, ρ = 0.0115, θ = 0.012, µ = 0.02, δ = 0.011
(2.35)

Gives the following time dependent solutions,

S(t) = 0.0543121848 0t3 + 2.75086940t2 + 60.9120t+ 500

V (t) = 0.14076540 t2 + 7.2120t+ 120

E(t) = 0.0543121848 0t3 + 2.52392325t2 + 41.8430t+ 65

I(t) = 0.06759615 t2 + 2.0980t+ 23

R(t) = 0.0229530 t2 + 1.0890t+ 14

(2.36)
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Graphical illustration of the resulting iterations is thus shown below:
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3.0 Discussion of results and recommendation.
Numerical simulation was carried out and presented graphically to investigate the effect of
vaccine on the state variables as it is an efficient control measure to eradicate the rapid spread
of the disease. Figure 1: It clearly shows that the rate of vaccination of susceptible individuals
in the population increases as it reduces the infected population with time. Figure 2: Depicts
that the exposed individual in the population reduces as vaccination is applied to the popula-
tion of infected individuals. Figure 3: Depicts the effect of vaccine on the infected individual
in the population as a strategic means to flatten the curve. It is therefore recommended that
health practitioners implement vaccination as a control measure on infected individuals in the
population in order to flatten the curves of this disease.
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