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Abstract: This work contains the study, analysis, and solution of a SEIR epidemic model. An ef-
fective hybrid block method was used in the solution of the system of linear differential equations
to investigate the effect of transmission coefficient on the SEIR model with a permanent immunity.
Numerical simulation of the included control parameters are carried out. The obtained results and
outcomes are presented graphically.
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1. Introduction

In recent times, the attention of scientists has been drawn to the SEIR model due to their naturally
occurrence and repeatedly in physical models. The most important concepts of epidemic models can
be demonstrated using the SEIR model by [1]. The model considered is formulated by Olayiwola
& Kolawole (2019) to induce and as a good strategic cure for total eradication of the disease. The
set of individuals who are vaccinated do not move to the infected mode. Dynamically, modeling
of human and its daily challenges over time in all areas of social, cultural, physical, science, and
engineering can be formulated with mathematical equation in [2]. Several vaccination strategies for
infectious disease has been formulated by modelers across board to proffer solutions to infectious
diseases based on the population understudy in [3]. Models are subjected to fractals as susceptible
S(t) individuals, exposed E(t) individuals, infected individuals and population of those that have
recovered R(t). An SEIR model can represent human infectious disease such as Marburg, smallpox,
typhoid, measles, and cholera by [4]. A generic model of SEIR focusing on immunity from the infec-
tious disease under focus. Saturation term takes a vital role in determining the course of spread of a
disease, the threshold which governs the model formulated take a junk of the disease trajectory. The
focus of our research is an optimal control proposed by [5]. Several researchers have worked on the
impact of saturation term as a tool to controlling the spread and eradication of disease, as studied
by considering saturation term for susceptible individuals of an SEIR epidemic model analysing the
impact of saturation term on the incidence rate whose result revealed that it’s a proper and effective
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strategy to eradicate the infectious disease by [6]. The infection of human by vectors and human to
adhere to restricted domains are crucial to avoid the rapid spread of the disease solely to evaluate
the impact of each factors of spread of covid-19 through sensitization by health professionals. Their
research reveals that saturation term helps in reducing the prevalence of malaria in [7–9]. To solve an
EIAV infection, their results revealed how prominent the method of resolving double fractal nonlin-
ear differential equations by [10]. SEIR varying time-population said to analyze and determine the
equilibrium points and its correspondence stability at equilibrium points by [11–14]. The subclass of
and SIR model focus on the implementation that the delay in the latency time rate which is the time
required for an infected individual to migrate to being infectious in [15]. The research of an SVEIR,
they explore the spontaneous predator-host disease with a saturated treatment function, which is the
proper and effective control measure to eradicate the disease in [16]. Effects of saturation term on
corona virus SIR model with the law of mass action in its application as a control was studied in [10].
This paper explore the effect of saturation term as a control policy to proffer total immunity against
typhoid disease, the numerical simulation result reveals that plays a vital role in the eradication of
the disease.

2. Materials and method

2.1. Description and model formulation

A set of an ordinary differential equations illustrating proposed mathematical model by Olayi-
wola et al :
Existing model

S∗ = Λ− βSI

1 +m1S +m2I
− µS + δR

E∗ =
βSI

1 +m1S +m2I
− (µ+ ϵ)E

I∗ = ϵE − (µ+ γ + δ)I

R∗ = γI − (µ+ δ)R

(2.1)

Subjected to δ = 0 and d = 0 gives the proposed model in Equation 2.2.
Modified Model
A compartmental based mathematical model for analyzing the spontaneity of an epidemic disease
to investigate the effect of transmission coefficient on the SEIR model with a permanent immunity.
Total population of N(t) , subclass of susceptible S(t) , exposed E(t), infected I(t), and the recov-
ered individuals R(t). Govern model expressed with the state variables and study parameters as
illustrated below:

S∗ = Λ− βSI

1 +m1S +m2I
− µS

E∗ =
βSI

1 +m1S +m2I
− (µ+ ϵ)E

I∗ = ϵE − (µ+ γ)I

R∗ = γI − µR

(2.2)

Subject to the following initial conditions S(0) = S0, E(0) = e0, I(0) = i0, R(0) = r0.

2.2. Existence Model

Consider the compartment of model formulation as obtained, we have;

Γ =

{
S(t), E(t), I(t), R(t) ∈ R4

+ : N ≤ Λ

µ

}
(2.3)
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The derivative is obtained as;

N∗ =
d

dt
(S(t) + E(t) + I(t) +R(t))

N∗ = (S∗ + E∗ + I∗ +R∗)

N∗ = [∆− βSI

1 +m1S +m2I
− µS +

βSI

1 +m1S +m2I
− (µ+ ϵ)E + ϵE − (µ+ γ)I + γI − µR]

N∗ = ∆− µ(S + E + I +R)

N∗ ≤ Λ− µN

N(t)lµt =
Λ

µ
lµt + C, as C is a constant of integration

N(t) =
Λ

µ
+ Cl−µt, by the initial condition at t = 0

C ≤ N(0)− Λ

µ
(2.4)

Taking the initial t and N(t) such that;

lim
t→∞

N(t) ≤ lim
t→∞

[
∆

µ
+

(
N(0)− Λ

µ

)
l−µt

]
=

Λ

µ
(2.5)

If N(0) ≤ Λ
µ , then N(t) ≤ Λ

µ . It is hereby concluded that considering the dynamics of the model
in the domain R4

+. It can be considered to be well posed. However, the non-negativity the model
formulation migrates to be feasible region, Γ which is a positively invariant set.

2.3. Positivity of the Model

Theorem 2.1. If Ψ = {S,E, I,R ∈ R4
+ : S0 > 0, E0 > 0, I0 > 0, R0 > 0} at t > 0 the solutions of

(S,E, I,R) is positively invariant.

Proof.

S∗ = Λ− βSI

1 +m1S +m2I
− µS(t)

S∗ ≥ − µS(t)∫
S∗

S(t)
≥ − µ

∫
dt

S(t) ≥ S0e
−µt > 0

(2.6)

E∗ =
βSI

1 +m1S +m2I
− (µ+ ϵ)E(t)

E∗ ≥ − (µ+ ϵ)E(t)∫
E∗

E(t)
≥ (µ+ ϵ)

∫
dt

E(t) ≥ E0e
−(µ+ϵ)t > 0

(2.7)

I∗ = ϵE − (µ+ γ)I

I∗ ≥ − (µ+ γ)I(t)∫
I∗

I(t)
≥ − (µ+ γ)

∫
dt

I(t) ≥ I0e
−(µ+γ)t > 0

(2.8)
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R∗ = γI − µR(t)

R∗ ≥ − µR(t)

int
R∗

R(t)
≥ − µ

∫
dt

R(t) ≥ R0e
−µt > 0

(2.9)

The partial derivatives of these functions exist and are continuous and bounded, therefore, Equa-
tion 3.10 exists and has a unique solution, therefore is well-posed in R4.

3. Model Analysis

3.1. Existence of disease free equilibrium state

At disease free equilibrium point, there is no outbreak of disease.

S∗ = E∗ = I∗ = R∗ = 0

As obtained, Λ − βSI
1+m1S+m2I

− µS = 0, Λ = µS, S0 = Λ
µ . The Disease Free Equilibrium (DFE)

E1 = (S0, E0, I0, R0) where S0 ̸= 0, I = 0 is

E1 =

(
Λ

µ
, 0, 0, 0

)
(3.10)

3.2. Endemic equilibrium point

Let Ee = (S∗, E∗, I∗, R∗) as endemic equilibrium where I ̸= 0. Model Equation 2.1 at equilibrium
point as:

Λ− βS∗I∗

1 +m1S∗ +m2I∗
− µS∗ =0

βS∗I∗

1 +m1S∗ +m2I∗
− (µ+ ϵ)E∗ =0

ϵE∗ − (µ+ γ)I∗ =0

γI∗ −
∑

R∗ =0

(3.11)

Λ− µS∗ =(µ+ ϵ)E∗

I∗ =
ϵE∗

µ+ γ

(3.12)

Also from the Equation 2.4, we obtain that βS∗I∗ = ⌊1 +m1S
∗ +m2I

∗⌋(µ+ ϵ)E∗

βS∗E∗ϵ

(µ+ γ)
=

[
1 +m1S

∗ +m2
ϵE∗

(µ+ γ

]
(µ+ ϵ)E∗

βS∗ϵ = (µ+ ϵ)(µ+ γ)

[
1 +m1S

∗ +m2
ϵE∗

(µ+ γ

]
βS∗ϵ = (µ+ ϵ)(µ+ γ) + (µ+ ϵ)(µ+ γ)m1S

∗ +m2ϵE
∗(µ+ ϵ)

S∗ [βϵ− (µ+ ϵ)(µ+ γ)m1] = (µ+ ϵ)(µ+ γ) +m2ϵE
∗(µ+ ϵ)

S∗ =
(µ+ ϵ)((µ+ γ) +m2ϵE

∗)

[βϵ− (µ+ ϵ)(µ+ γ)m1]

(3.13)
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E∗ =
Λ− µS∗

µ+ ϵ

R∗ =
ϵγE∗

µ(µ+ γ)

R∗ =
γϵ

µ(µ+ γ)

[
Λ− µ(µ+ ϵ)(µ+ γ +m2ϵE

∗)

(µ+ ϵ)(βϵ)(βϵ−m1(µ+ ϵ)(µ+ γ))

] (3.14)

3.3. The basic reproductive ratio

The spread of the disease is tantamount to an infectious individual who communicate this within
the populace. The threshold as the govern factor for its spread R0 . This is obtained considering its
feasibility via next generation as the transmission and transition matrix of the model formulation is
resolved.

E∗ =
βSI

1 +m1S +m2I
− (µ+ ϵ)E

I∗ = ϵE − (µ+ γ)I

(3.15)

R0 = G = ρ(F ×V −1), from equilibrium S0 =
Λ
µ , transition & transmission matrix obtained from the

partial derivatives with respect to the disease classes evaluated at the disease free equilibrium E1.

Fi =

(
∂fi(xi)

∂xj

)
, Vi =

(
∂vi(xi)

∂xj

)
, i, j = 1, 2, . . . , n, ∀n < ∞ (3.16)

f =

(
betaSI

1+m1S+m2I

0

)
, v =

(
(µ+ ϵ)E

−ϵE‘ + (µ+ γ)I

)
F =

(βS0

m2
0

0 0

)
, V =

(
(µ+ ϵ) 0
−ϵ (µ+ γ)

) (3.17)

As det(V ) = (µ+ ϵ)(µ+ γ), V −1 =

(
1

(µ+ϵ)
ϵ

(µ+ϵ)(µ+γ)

0 1
(µ+γ)

)
. Since R0 = G = ρ(F × V −1)

R0 =

(βS0

m2
0

0 0

)( 1
(µ+ϵ)

epsilon
(µ+ϵ)(µ+γ)

0 1
(µ+γ)

)
(3.18)

The dominant Eigenvalue is the Basic Reproduction Number.

4. Stability of Disease Free Equilibrium

4.1. Local stability

The model representation for typhoid as above locally asymptotically stable if Ro < 1, vice versa
whenever Ro > 1. at equilibrium E1 =

(
∧
µ , 0, 0, 0, 0

)
taking Jacobian matrix with the characteristic

equation of |JE1 − γiI| = 0 as γ1 and I are the Eigenvalues and identity matrix respectively. Where
i = 1, 2, 3, 4.
Therefore:

JE1 =

∣∣∣∣∣∣∣∣∣
−ν 0 −βS0

m2
0

0 −(ν + ϵ) βS0

m2
0

0 ϵ −(ν + γ 0
0 0 γ −ν

∣∣∣∣∣∣∣∣∣
69



Kolawole

JE1 =

∣∣∣∣∣∣∣∣∣
−ν 0 − βλ

µm2
0

0 −(ν + ϵ) βλ
µm2

0

0 ϵ −(ν + γ 0
0 0 γ −ν

∣∣∣∣∣∣∣∣∣ (4.19)

then, determining the eigenvalues,
|JE1 − λiI| = 0 ∣∣∣∣∣∣∣∣∣

−ν − λ1 0 − βΛ
νm2

0

0 −(ν + ϵ)− λ2
βΛ
νm2

0

0 ϵ −(ν + λ− λ3 0
0 0 λ −ν − λ4

∣∣∣∣∣∣∣∣∣ = 0 (4.20)

λ1 = −µ, λ4 = −µ∣∣∣∣∣−(µ+ ε)− λ βΛ
µm2

ε (µ+ ν)− λ

∣∣∣∣∣
λ2 − [(µ+ ν)(µ+ ε]λ+

∣∣∣λ+ ε)(µ+ ν) βΛ
µm2

∣∣∣ = 0

By Descartes rule of sign, the non-negative roots obtained which are negatively invariant; therefore
they are locally asymptotically stable.

4.2. Stability of Endemic Equilibrium Point.

At equilibrium of the proposed model is said to be locally asymptotically stable if R0 < 1.
Let S = a+ S∗, E = b+ E∗, I = c+ I∗, R = d+R ∗. From system of equation below,

S∗Λ− βSI

1 +m1S +m2I
− (µε)

E∗ =
βSI

1 +m1S +m2I
− (µ+ ε)E

I∗ = εE − (µ+ λ)I

R∗ = λI − µR

(4.21)

By linearization, substituting to the above equation;

a∗ = Λ− β(a+ S∗)(c+ I∗)[1 +m1(a+ S∗) +m2(c+ I∗)]−1 − µ(a+ S∗)

b∗ = β(a+ S∗)(c+ I∗)[1 +m1(a+ S∗) +m2(c+ I∗)]∗ − (µ+ ε)(b+ E∗)

c∗ = ε(b+ E∗)− (µ+ γ)(c+ I∗

d∗ = γ(c+ I∗)− µ(d+R∗)

(4.22)

Therefore,

a∗ = βaz[1 +m1x+m2z]
−1 − µa+ higherorder + non− linear

b∗ = βaz[a+m1a+m2z]
−1 − (µ+ ε)b+ higherorder + non− linear

c∗ = εb− (µ+ γ)x+ higherorder + non− linear

d∗ = γc− µd+ higherorder + non− linear

(4.23)

∣∣∣∣∣∣∣∣∣
−βc+µ

m1
0 − βa

m2
0

βc+µ
m1

−(µ+ ε) βa
m2

0

0 ε −(µ+ γ) 0
0 0 γ −µ

∣∣∣∣∣∣∣∣∣ (4.24)
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Characteristic equation of |JE1 − λiI| = 0∣∣∣∣∣∣∣∣∣
− (βz+µ

m1
− λ 0 − βx

m2
0

(βz+µ
m1

−(µ+ ϵ)− λ βx
m2

0

0 ϵ −(µ+ γ)− λ 0
0 0 γ −µ− λ

∣∣∣∣∣∣∣∣∣ (4.25)

The resulting Eigen-value become,

(
(βz + µ)

m1
− λ)(−(µ+ ϵ− λ)(−(µ+ γ)− λ)(−µ− λ = 0 (4.26)

Let u = − (βz+µ
m1

, v = −(µ+ ϵ), w = −(µ+ γ), x = −µ
(u− λ)(v − λ)(w − λ)(x− λ) = 0

λ4− [(u+v) = (w+x]λ3+[(u+v)(w+x)+uv+wx]λ2− [uv(w+x)+wx(u+v)]λ+uvwx = 0 (4.27)

Therefore, they are Locally Asymptotically Stable.

4.3. Global stability

Consider that Lyapunov function in the neighborhood of zero. However, v(x1, x2) = v >
0,∀x1, x2 > 0, ,global asymptotic stability of the proposed model in the region ℜ2, with respect to
time, at equilibrium state via Lyapunov algorithm is obtained;

ω = {E(t), I(t),∈ ℜ2;N ≤ Λ

µ
} (4.28)

V (t, E, I) = C1I1 + C2I2
dV
dt = C1I

∗
1 + C2I

∗
2

V ∗ = C1

[
βS0I2

1+m1S0+m2I2
− µ+ ϵ)I1

]
+ C2[ϵI1 − (µ+ γ)I2]

= C1
βS0I2

1+m1S0+m2I2
− C1 − µ+ ϵ)I1 + C2ϵI1 − C2(µ+ γ)I2

V ∗ ≤ [C2ϵ− C1(µ+ ϵ)]I1 +

[
C − 1

βS0

1 +m1S0 +m2
− C2(µ+ γ

]
I (4.29)

V ∗ ≤ [C2ϵ− C1(µ+ ϵ)]I1 +
[
C − 1 βS0

1+m1S0+m2
− C2(µ+ γ

]
I2 ≤ N,S

As 1 +m1S0 ≤ S0 =
Λ

µ
, Let C1 =

1

µ+ ϵ
, C2 =

βΛ

µm2(µ+ ϵ)(µ+ γ
) (4.30)

≤
[

βϵΛ
µm29(µ+ϵ)(µ+γ − (µ+ϵ)

µ+ϵ

]
I1 +

[
βΛ

µm2(µ+ϵ) −
βΛ(µ+γ)

µm2(µ+ϵ)(µ+γ)

]
I2

v∗ ≤
[

βϵΛ
µm2(µ+ϵ)(µ+γ)

]
I1

V ∗ ≤ [R0 − 1]I (4.31)
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Imperatively to note that V ∗ = 0 only at any outbreak of infection beyond the domain, at equi-
librium and at t →∝. As postulated by LaSalle’s invariance whenever E0 = 0 is said to be globally
asymptotically stable whenever R0 > 1.

4.4. Sensitivity Analysis on Ro

The sensitivity indices of Ro is obtained via partial differentiating with respect to all the parame-
ters in Ro. The normalized forward sensitivity index is defined: As R0 =

βϵΛ
νm2(ν+ϵ)(ν+γ)

∂R0

∂µ
=

βϵΛ

m2ϵγ
.
µµm2(µ+ ϵ)(µ+ γ)

βϵΛ
=

µ2(µ+ ϵ)(µ+ γ)

ϵγ

∂R0

∂β
=

ϵΛ

µm2(µ+ ϵ)(µ+ γ)
.
βµ2(µ+ ϵ)(µ+ γ

Λϵβ
= 1

∂R0

∂Λ
=

βϵ

µm2(µ+ ϵ)(µ+ γ)
.
Λµ2(µ+ ϵ)(µ+ γ)

Λϵβ
= 1

∂R0

∂ϵ
=

βΛ

µ2m2(µ+ γ)
.
ϵµ2(µ+ ϵ)(µ+ γ)

Λϵβ
=

(µ+ ϵ)

µ

∂R0

∂γ
=

βϵΛ

µ2m2(µ+ γ)
.
γµ2(µ+ ϵ)(µ+ γ)

Λϵβ
=

γ(µ+ γ)

µ

∂R0

∂m2
=

βϵΛ

µ(µ+ ϵ)(µ+ γ)
.
µ(m2)

2(µ+ ϵ)(µγ

Λϵβ
= m2

2

(4.32)

The parameter and indices of sensitivity analysis is deduced from the initial values of the said
parameters

Table 4.1: Description, symbols, values, and sources

Parameters and description Symbol Values Sources

S(t) Time-dependent number of
susceptible humans

S0(t) 15 Assumed

E(t) Time-dependent number of
exposed humans

E0(t) 10 Assumed

I(t) Time-dependent number of
infected humans

I0(t) 13 Assumed

R(t) Time-dependent number of
recovered humans

R0(t) 11 Assumed

Rate of migration to susceptible ϵ 0.25 Assumed
Natural death rate µ 0.3 Assumed
Recruitment rate of individuals Λ 49 Assumed
Recovery rate from infected in-
dividuals

γ 0.1 Assumed

Recovery rate to Susceptible
class

m1 0.1 Assumed

Recovery rate from Infected
class

m2 0.2 Assumed

Successful contact rate β 1.0 Assumed
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Parameter values of the model result,

Table 4.2: Sensitivity Indices on R0

S/N Parameters Sensitivity Indices

∂R0

∂µ
µ2(µ+ϵ)(µ+γ)

ϵγ 0.79200
∂R0

∂β 1 1.00000
∂R0

∂Λ 1 1.00000
∂R0

∂γ
γ(µ+γ)

µ 0.13333
∂R0

∂ϵ
(µ+ϵ)

µ 1.83333
∂R0

∂m2
m2

2 0.04000

5. Numerical simulation

In numerical analysis, numerical block methods are a class of algorithms used to approximate
solutions to differential equations (DEs). The term "block" refers to the idea of combining two or more
methods to solving a problem. These set of methods work as a unit method which are essentially
useful when the equations are complex or when traditional numerical techniques like explicit or
implicit methods become computationally expensive or unstable. The combination of these methods
gives rise to a computationally stable and efficient method. The term hybrid refers to the division
of the region of the problem into sub-regions, thereby creating an instance in which the fractional
(hybrid) step points are considered. This also improves the accuracy of the method. The basic concept
of numerical block methods involves the following steps:

Problem Decomposition: The first step is to decompose the original problem into a set of smaller
sub-problems or blocks. These blocks can be either spatial or temporal regions, depending on the
nature of the problem.

Selection of Numerical Methods: Once the blocks are defined, different numerical methods can
be selected to solve each block efficiently. The choice of methods can vary depending on the charac-
teristics of the specific block and the overall problem.

Selection of Numerical Methods: Once the blocks are defined, different numerical methods can
be selected to solve each block efficiently. The choice of methods can vary depending on the charac-
teristics of the specific block and the overall problem.

Coupling Strategy: After solving each block independently, a coupling strategy is used to inte-
grate the solutions and ensure consistency across the entire problem domain. This step is essential as
it determines how the solutions from different blocks interact and influence each other.

Stability and Accuracy Analysis: Like any numerical method, stability and accuracy are crucial
considerations. The stability of the method depends on the stability properties of the chosen numeri-
cal methods for each block, as well as the coupling strategy used. The overall accuracy of the method
is affected by the accuracy of individual block solutions and the coupling scheme.

Implementation and Efficiency: Once the numerical hybrid block method is designed, it needs to
be implemented using appropriate programming techniques to solve the original problem effectively.
Efficiency and computational cost are also essential factors to consider.

Numerical hybrid block methods can be particularly advantageous in problems where the equa-
tions have distinct features or behaviors in different regions of the domain, as they allow for special-
ized treatment in each block. They can lead to faster computations and increased stability, especially
for large-scale problems.
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The method for solving the problem in differential equation defined by;

dy(t)

dt
= f(t, y), y(x0) = y0 (5.33)

and its related system

dY (t)

dt
= f(t, Y ), Y (x0) = Y0 (5.34)

f(t, y) is said to be continuous on f and yth differentiable in the neighbourhood of y(x0) = y0,
was derived by assuming a continuous approximate for un(t) of a multi-step and multi-derivative
for fourth order differentials having its form as:

un(t) = an(t)yn +Σl
i=1h

i
(
βi,0(t)f i−1

n
+ βi,v(t)f

(i−1)
n+v +Σk

j=1βi,k(t)f
(i1)
n+j

)
≈ y(t) (5.35)

Where k is the fold obtained,l is order of derivatives, v ∈ (0, k) is an out of boundary point achieved
and j is the order of derivative for f(t, y). Moreover, the continuous coefficients βi,j(t), i = 0, v, k, j =
1(1)k is determined and obtained via approximation of the exact solution y(t) by evaluating the
function:

u(t) = Σr+ls−1
j=0 rjt

j (5.36)

Where rj , (j = 0, 1, ..., r + ls − 1) are coefficients determined, tj are the basis functions of degree
r + ls − 1, l, r and s is the order of derivatives, interpolating and collocations points respectively.
While ensuring that the function corresponds with the analytical solution at the end point tn, the
following conditions were imposed on u(t) and its derivatives u(k)(t) to get the coefficients of the
desired methods:

u (tn+j) = yn+j , j = 0

u′ (tn+j) = fn+j , j ∈ [0, ..., k]

u′ (tn+j) = fn+j , j ∈ [0, ..., k]

u” (tn+j) = f ′
n+j = gn+j , j ∈ [0, ..., k]

u” (tn+j) = f”n+j = hn+j , j ∈ [0, ..., k]

.

.

.

u(k) (tn+j) = f
(k−1)
n+j , j ∈ [0, ..., k]

(5.37)

The coefficients obtained were substituted into (6) to obtain the continuous coefficients in (6) which
were then evaluated at tn+k to obtain the desired methods.

5.1. One-step, derivative of first order and two off-step method

For k = 1, l = 1, and v = 1
7 and 2

7 , the one-step, first derivative and two off-grid points method in
block form as follows:

yn+1 = yn +
h

24

(
19fn − 49fn+ 1

7
+ 49fn+ 2

7
+ 5fn+1

)
yn+ 1

7
= yn +

h

5880

(
335fn − 595fn+ 1

7
− 91fn+ 2

7
+ fn+1

)
yn+ 2

7
= yn +

h

21

(
fn + 4fn+ 1

7
+ fn+ 2

7

) (5.38)
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Appling Equation 5.34 to system of equations obtained in Equation 5.35, we have

Yn+1 = Yn +
h

24

(
19fn − 49fn+ 1

7
+ 49fn+ 2

7
+ 5fn+1

)
Yn+ 1

7
= Yn +

h

5880

(
335fn − 595fn+ 1

7
− 91fn+ 2

7
+ fn+1

)
Yn+ 2

7
= Yn +

h

21

(
fn + 4fn+ 1

7
+ fn+ 2

7

) (5.39)

The application of the numerical results on the SEIR model, brings about a non-linear algebraic equa-
tions whose solutions were obtained using the Newton Krylov’s formula.

5.2. Numerical Results and Simulating Graphs

Numerical result obtained via the Hybrid block algorithm clearly illustrate the rapid convergence
of the derivatives of the differential equations of the model formulation which enhance the desired
iteration. The numerical results obtained are presented graphically.

Figure 5.1: SEIR simulation graph at (a.) β = 0, 8 and (b.) β = 0, 6

Figure 5.2: SEIR simulation graph at (a.) β = 0, 4 and (b.) β = 0, 2
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Figure 5.3: SEIR simulation graph at β = 0, 002

6. Discussion of Results and Conclusion

Figure 5.1 (a.) displays the simulating result when β = 0, 8, clearly shows that as exposed class
decreases with infected class, the susceptible and recovered class are on the increase. Figure 5.1 (b.)
shows the simulation at β = 0, 6 and it was observed that the exposed class reduces rapidly with
an increase in the susceptible, relatively with the recovered class. Figures 5.2 and Figure 5.3 reveals
drastic changes in susceptible class. It is therefore concluded that the lower the value of β , the better
the stability of the disease free equilibrium. In conclusion, the presence of a permanent immunity,
β plays a vital role in disease eradication and as an adequate control measure to flatten the curve of
typhoid with time.
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