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Abstract:
In this paper we investigate the boundedness of Mikhlin perators on generalized Morrey spaces. The
results show that the operators are bounded on generalized Morrey spaces under some assumptions.
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1. Introduction

The concept of differential equation has many application in real life. It can be used to model
some pyschical problems, such as heat diffusion and wave equation. One of the model for heat
diffusion in the form of partial differential equation is the following system:

ut = kuxx, x ∈ R, t > 0,

u(x, 0) = ϕ(x), x ∈ R

where k is a positive constant and u(x, t) represents the temperature of a wire at a point x and at the
time t ≥ 0, and the function ϕ(x) is the initial condition, namely the temperature of the wire at point
x and at the time t = 0.

One may solve the system and obtain that the solution is given by

u(x, t) =

∫
R
K(x− y, t)ϕ(y)dy

where K is a kernel defined by

K(x, t) =
1√
4πkt

e
(x−y)2

4kt

Moreover, we can write the solution as a convolution

u(x, t) = (K(·, t) ∗ ϕ)(x)

Fourier transform F then implies that

F(u) = û = ˆ(K ∗ ϕ) = (2π)n/2K̂ϕ̂
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We see that ϕ̂ is mapped to û(x, t) by "multiplying" with K̂. The operator is called multiplier operator
generated by K̂ or Fourier multiplier.

S.G. Mikhlin generalized the Fourier multiplier operator in 1956. The operator was then called
Mikhlin operator. He also prove that the operator is bounded on Lebesgue space Lp(Rn) = Lp for
1 < p < ∞. There are some generalization of Lebesgue spaces. One of the important generalization
is Morrey space.

Morrey space was first introduced by Morrey [1] in 1938 that used to study the local behavior of
solution for elliptic differential equation. Related to Mikhlin Operator, Maharani et al [2] had proved
that the operator was bounded on Morrey space which exactly extends the result by Mikhlin.

Generalized Morrey space was then introduced as in [3] as the generalization of the (classical)
Morrey space. Mizuhara proved the boundedness of some singular integral operators on the space.
In this article, we investigate the assumption that ensure the boundedness of the Mikhlin operator
on Generalized Morrey space as in last section.

2. Definitions and Previous Results

In this section, we provide some previous results and definitions. We start with the notion of
multi-index. Multi-index α is ordered n−tuple of non-negative integer, namely

α = (α1, · · · , αn)

where α1, · · · , αn ∈ N ∪ {0}. Moreover, for multi-index α, the symbol |α|∗ represents the size of α
that is defined as

|α|∗ = α1 + · · ·+ αn,

and for x = (x1, · · · , xn) ∈ Rn and α = (α1, · · · , αn) is a multi-index, we write

xα = xα1
1 · · ·xαnn .

The following lemma contains some basic properties of multi-index.

Lemma 2.1. If α is multi-index and k ∈ N, then there is a constant Cn,α > 0 and Cn,k > 0 such that

|xα| ≤ Cn,α|x||α|∗ ,

and
|x|k ≤ Cn,k

∑
|β|∗=k

|xβ|

for all x ∈ Rn.

The proof of lemma 2.1 are elementary and we omit it here. Next, we provide the definition and
properties of Schwartz space and tempered distribution space. These spaces play important roles
in Fourier analysis and harmonic analysis. The followings are the definition and characterization of
Schwartz space.

Definition 2.1. [4] Schwartz space, denoted by S = S(Rn), is set of all functions f such that for all
multi-indexes α and β, there is a positive constant Cα,β satisfying

ρα,β(f) = sup
x∈Rn

|xα∂βf(x)| = Cα,β <∞

By using properties of multi-indexes, one may prove the following lemma of characterization of
Schwartz function. The lemma tells us that the Schwartz function is infintely differentiable function
that is rapidly decreasing [5, 6].
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Lemma 2.2. f ∈ S if and only if for all N ∈ N and multi-indexes α, there is a constant Cα,β>0 such that

|(∂αf)(x)| ≤ Cα,N (1 + |x|)−N

for all x ∈ Rn.

For the discussion about the topology of Schwartz space, one may refer to [4]. Next, we define
the the tempered distribution space.

Definition 2.2. [4] Tempered distribution space, denoted by S ′, is set of all bounded linear functional
on S.

The following lemma gives us a class of tempered distribution.

Lemma 2.3. [7] Let f be a function on Rn such that for some N ∈ N we have∫
Rn

|f(y)|
(1 + |x|)N

dy <∞.

Then, f is a tempered distribution.

Next, we provide the definition and properties of Mikhlin Operator, particularly in Lebesgue
spaces.

Definition 2.3. [8] Let N = n + 2 where n ∈ N and m : Rn \ {0} → C be an N−times differentiable
function such that

|∂αxm(x)| ≤ C|x|−|α|∗

for all x ∈ Rn \ {0} and for multi-index α where |α|∗ ≤ N where C is positive constant that does not
depend on x and α. A Mikhlin operator is defined as

M(f) = F [mf̂ ]

for all f ∈ S(Rn).

Theorem 2.1. [8] Let M be a Mikhlin operator. Then, M can be extendend to a bounded linear operator in Lp

for 1 < p <∞.

By theorem 2.1 and properties of Fourier transform, we may rewrite the Mikhlin Operator as
follows.

M(f)(x) =

∫
Rn
K(x− y)f(y)dy = (K ∗ f)(x), x ∈ Rn

for suitable function f where K is a kernel with properties as in the following theorem.

Theorem 2.2. [8] Let M be a Mikhlin operator. Then there is a locally integrable and continuously differen-
tiable funtion K : Rn \ {0} → C with compact support which satisfies

|K(z)| ≤ C
1

|z|n
, |∇K(z)| ≤ C

1

|z|n+1

for z ̸= 0 where C > 0 is independent of z and

M(f)(x) =

∫
Rn
K(x− y)f(y)dy

for all x /∈ supp (f), f ∈ L2(Rn).
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We know that the Fourier transform is extended to any function in tempered distribution space.
Then,

M(f)(x) =

∫
Rn
K(x− y)f(y)dy

for all x /∈ supp(f) where f is a function in tempered distribution.
We end this section with the definition of Generalized Morrey space.

Definition 2.4. (Generalized Morrey Space) Let Ω be a measurable subset of Rn, 1 < p <∞ and ψ be
a positively function on Rn × (0,∞). The Generalized Morrey space Mp

ψ(Ω) is set of all measurable
function f such that ∥f∥Mp

ψ
<∞ where

∥f∥Mp
ψ(Ω) = sup

a∈Rn,r>0

1

ψ(a, r)
∥f∥Lp(B(a,r)∩Ω) = sup

a∈Rn,r>0

1

ψ(a, r)

(∫
B(a,r)∩Ω

|f(y)|pdy

) 1
p

If Ω = Rn, we write Mp
ψ = Mp

ψ(Ω). In the definition, if we set ψ(a, r) = rλ/p where 0 ≤ λ < n,
we have Mp

ψ as (classical) Morrey space. Moreover, if we set ψ as a positively constant function, Mp
ψ

is Lebesgue space Lp. If we can prove the boundedness of Mihklin operator on Generalized Morrey
space, we also have the same property for (classical) Morrey space and Lebesgue space Lp.

3. Boundedness of Mikhlin Operator on Generalized Morrey Spaces

In this section, we state our main result and its proof. Our main results are in the following
theorem.

Theorem 3.1. Let M be a Mikhlin operator. Suppose the functions ψ1 and ψ2 on Rn × (0,+∞) satisfy that
for some C > 0,

sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r
inf

s<t<∞
ψ1(a, t)

ds

s
≤ C.

Then, M can be extended to be a bounded linear operator from Mp
ψ1

to Mp
ψ2

for 1 < p < +∞.

By elementary facts in real analysis, we have the following corollary.

Corollary 3.1. Let M be a Mikhlin operator. Suppose the functions ψ1 and ψ2 on Rn × (0,+∞) satisfy that
for some C > 0,

sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r
ess inf
s<t<∞

ψ1(a, t)
ds

s
≤ C.

Then, M can be extended to be a bounded linear operator from Mp
ψ1

to Mp
ψ2

for 1 < p < +∞.

Corollary 3.2. Let M be a Mikhlin operator. Suppose the functions ψ1 and ψ2 on Rn × (0,+∞) satisfy that
for some C > 0,

sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r
ψ1(a, s)

ds

s
≤ C.

Then, M can be extended to be a bounded linear operator from Mp
ψ1

to Mp
ψ2

for 1 < p < +∞.

Before proving Theorem 3.1, we first provide the following theorems.

Theorem 3.2. Suppose that p, ψ1, and ψ2 as in Theorem 3.1. Let f ∈ Mp
ψ1

and B(a, r) a ball in Rn. Then,∫
(2B(a,r))c

|f(y)|
|a− y|n

dy ≤ C

∫ ∞

r

1

|B(a, s)|
1
p

∥f∥Lp(B(a,s))
ds

s

where C > 0 is independent of f, a, and r.
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Proof. By using Fubini’s theorem and Holder’s inequality,∫
B(a,2r)c

|f(y)|
|a− y|n

dy ≤ C

∫ ∞

2r

1

|B(a, s)|

∫
B(a,s)

|f(y)|dyds
s

≤ C

∫ ∞

2r

1

|B(a, s)|
∥f∥Lp(B(a,s))∥1∥Lp′ (B(a,s))

ds

s

≤ C

∫ ∞

2r

|B(a, s)|1/p′

|B(a, s)|
∥f∥Lp(B(a,s))

ds

s

= C

∫ ∞

2r

1

|B(a, s)|
1
p

∥f∥Lp(B(a,s))
ds

s
≤ C

∫ ∞

r

1

|B(a, s)|
1
p

∥f∥Lp(B(a,s))
ds

s

It proves the theorem.

Theorem 3.3. Suppose that ψ1 and ψ2 as in Theorem 3.1. Let f ∈ Mψ1 and B(a, r) is a ball in Rn. Then,
f2 = f · X(2B)c is tempered distribution.

Proof. Let g ∈ S. We see that by Holder’s inequality, Theorem 3.2, and Lemma 2.2 (taking |α|∗ = 0
and N ∈ N with N > n), the following estimate holds.

| ⟨f2, g⟩ | ≤
∫
Rn

|f2(x)| · |g(x)|dx =

∫
B(a,2r)c

|f(x)| · |g(x)|dx ≤ C

∫
B(a,2r)c

|f(y)|
(1 + |y|)N

dy

= C

∫
B(0,2r)c

|f(y)|
(1 + |y|)N

+ C

∫
B(0,2r)

|f(y)|
(1 + |y|)N

− C

∫
B(a,2r)

|f(y)|
(1 + |y|)N

≤ C

∫
B(0,2r)c

|f(y)|
(1 + |y|)n

dy + C

[
|B(0, 2r)| · max

y∈B(0,2r)

1

(1 + |y|)Np′
] 1
p′

∥f∥Lp(B(0,2r))

− C

[
|B(0, 2r)| · min

y∈B(0,2r)

1

(1 + |y|)Np′
] 1
p′

∥f∥Lp(B(0,2r))

≤ C

∫
B(0,2r)c

|f(y)|
|y|n

dy +

[
|B(0, 2r)| · max

y∈B(0,2r)

1

(1 + |y|)Np′
] 1
p′

∥f∥Lp(B(0,2r))

≤ C

∫ ∞

2r

1

|B(0, s)|
1
p

∥f∥Lp(B(0,s))
ds

s
+ Cr,p

≤ C
1

rn

∫ ∞

2r
∥f∥Lp(B(0,s))

ds

s
+ Cr,p

Hence,

| ⟨f2, g⟩ | ≤ C
1

rn

∫ ∞

2r
∥f∥Lp(B(0,s))

sups<t<∞
1

ψ1(0,t)

sups<t<∞
1

ψ1(0,t)

ds

s
+ Cr,p

= C
1

rn

∫ ∞

2r
inf

s<t<∞
ψ1(0, t)∥f∥Lp(B(0,s)) sup

s<t<∞

1

ψ1(0, t)

ds

s
+ Cr,p

≤ C
1

rn

∫ ∞

2r
inf

s<t<∞
ψ1(0, t)

dt

t
· sup
t>0

∥f∥Lp(B(0,t)) sup
t<s<∞

1

ψ1(0, s)
+ Cr,p

= C
1

rn

∫ ∞

2r
inf

s<t<∞
ψ1(0, t)

dt

t
· sup
t>0

∥f∥Lp(B(0,t))
1

ψ1(0, t)
+ Cr,p

≤ C∥f∥Mp
ψ1

· ψ2(0, 2r)

rn
+ Cr,p

<∞
It proves Theorem 3.3
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Theorem 3.4. Let M be a Mikhlin operator. Then, for 1 < p <∞ we have

∥Mf∥LpB(a,r) ≤
∫ ∞

r
∥f∥Lp(B(a,s))

ds

s
, (a, r) ∈ R× (0,∞).

Proof. For the function f, we write f = f1 + f2 where f1 = f · XB(a,2r). By the boundedness of M on
Lp as in Theorem 2.1, we have

∥Mf1∥Lp(B(a,r)) ≤ ∥Mf1∥Lp ≤ ∥f1∥Lp = ∥f∥Lp(B(a,2r))

The fact that t 7→ ∥f∥Lp(B(a,t)) is increasing then implies

∥f∥Lp(B(a,r)) ≤
∫ ∞

r
∥f∥Lp(B(a,s))

ds

s
, (a, r) ∈ Rn × (0,+∞),

and
∥Mf1∥Lp(B(a,r)) ≤

∫ ∞

2r
∥f∥Lp(B(a,s))

ds

s
≤
∫ ∞

r
∥f∥Lp(B(a,s))

ds

s
.

For f2, by Theorem 3.2 we have that for x ∈ B(a, r)

|Mf2(x)| ≤
∫
Rn

|f2(y)|
|x− y|n

dy

=

∫
(2B)c

|f(y)|
|x− y|n

dy

≤
∫
B(a,2r)c

|f(y)|
|a− y|n

dy

≤
∫ ∞

r

1

|B(a, s)|
1
p

∥f∥Lp(B(a,s))
ds

s

Hence,

∥Mf2∥LpB(a,r) ≤ |B(a, r)|
1
p

∫ ∞

r

1

|B(a, s)|
1
p

∥f∥Lp(B(a,s))
ds

s
≤
∫ ∞

r
∥f∥Lp(B(a,s))

ds

s

Therefore,

∥Mf∥Lp(B(a,r)) ≤
∫ ∞

r
∥f∥Lp(B(a,s))

ds

s

and this completes the proof.

Proof of Theorem 3.1. Let f ∈ Mp
ψ1

. By Theorem 3.4, we have

∥Mf∥Mp
ψ2

= sup
a∈Rn,r>0

1

ψ2(a, r)
∥f∥Lp(B(a,r))

≤ sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r
∥f∥Lp(B(a,s))

ds

s

= sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r
∥f∥Lp(B(a,s))

sups<t<∞
1

ψ1(a,t)

sups<t<∞
1

ψ1(a,t)

ds

s

= sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r
inf

s<t<∞
ψ1(a, t)∥f∥Lp(B(a,s)) sup

s<t<∞

1

ψ1(a, t)

ds

s

≤ sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r
inf

s<t<∞
ψ1(a, t)

dt

t
· sup
t>0

∥f∥Lp(B(a,t)) sup
t<s<∞

1

ψ1(a, s)

= sup
a∈Rn,r>0

1

ψ2(a, r)

∫ ∞

r
inf

s<t<∞
ψ1(a, t)

dt

t
· sup
t>0

∥f∥Lp(B(a,t))
1

ψ1(a, t)

≤ ∥f∥Mp
ψ1
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It completes the proof of theorem 3.1.

The results on Theorem 3.1 tells us that the Mihklin operator initially defined on L2 can be ex-
tended to generalized Morrey space. Then, the results directly holds on (classical) Morrey space [2]
and Lebesgue space 2.1. One may interest to extend this result to some more general function spaces
such as variable exponent generalized Morrey space by refering to results in [9].

4. Conclusion

According to the results, it can be concluded that the Mikhlin operator that is initially defined
on L2 can be extended to Generalized Morrey spaces and is bounded from one generalized Morrey
space to another generalized Morrey space under some assumptions.
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