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Abstract:
The paper deals with developing backgrounds to study and design the controllers for wide class of
dynamical system which can be found in various branches of human life. We offer to use the known
approach based on the solution of direct and inverse dynamic problems. This approach us to define
system motions by external signals which are given to it as well as define these signals by known
motion trajectories. Since the used approach operates with the transfer functions apparatus we offer
to generalize these functions by taking into account the system’s non-zero initial state while perform-
ing the Laplace-Carson’s transformation. Such an approach gives us the possibility to consider the
generalized transfer function as some matrix differential operator which defines free and perturbed
system’s motions. We study this operator in our pa-per and show the patterns of its determination
and implementation. Our study allows us to supplement the definition of direct and inverse dy-
namic problems and consider the last one as the problem with the several solutions which define the
control signal, external efforts and initial conditions. We use them to define the generalized direct
and inverse transfer function.

Keywords: Dynamical system, Direct and inverse dynamic problem, Transfer function, Initial states,
Matrix methods, Linear differential operator, Laplace-Carson transformation

1. Introduction

It is difficult to imagine the current stage of human development without using control theory de-
velopments. These developments are widespread in various branches of industry [1], transportation
[2], [3], technology [4], science [5], communications [6], and much more.

Modern developments in control theory are based on some control methods which allow us to
study control system motions [7], [8], [9], stability of these motions [10], [11], and design controllers
to form the desired motions [12], [13], [14]. The problem of controllers’ design is compounded by the
presence of external and internal disturbances and/or uncertainties. That is why a lot of methods
and approaches to designing closed-loop control systems are developed [15], [16], [17], [18], [19],
[20], [21]. One of them is based on the intellectual control paradigm and allows us to design con-
trollers by using neuro, fuzzy, and so on approaches [22], [23], [24]. The main problem with these
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approaches using is quite a big error which is caused by subjective factors and the main feature of
these approaches is not necessary to know control plant parameters and structure.

The next group of methods is based on using a plant model while a closed-loop system is being
designed [25], [26]. Various methods of plant modeling can be used: state space equations [27],
transfer functions [28]- [29], and so on. This group of control de-sign methods allows us to reduce
control error and increase system performance. Moreover, the use of transfer functions gives us the
necessary visualization of the designed control system by representing it with a block diagram. Also,
many control methods are known to operate with these diagrams and optimize and transform them.
That is why the use of transfer functions is convenient enough while the control system is designed.

The main problem with transfer functions’ usage is that these functions are defined as some inte-
grodifferential operator with zero initial conditions. It is clear that this fact reduces the area of using
these functions and does not allow to design of a control system for plants with a non-zero initial
state. We offer to avoid this drawback by generalizing the transfer function definition and then use
it design controller which takes into account the plant’s initial state.

Our paper organized as follows: at first, we define the generalized transfer function which con-
trary to conventional way takes into account system initial conditions, then this transfer function is
used to model the generalized linear plant which motion starts from non-zero state. At third, we use
the defined in such a way the generalized model to design controller transfer function as solution of
inverse dynamic problem for known desired plant motion. Contrary to known control approaches
the proposed method allows to define control signal which grant the desired motion from the given
initial condition as well as define initial conditions to move from which make it possible to reach
the desired paths with given control signal. We prove the correctness and benefits of our method in
section Results and Discussion where DC motor drive is modeled to transform it motion equations
to the desired form. We use the transformed equations to solve the direct dynamic problem and
define the generalized transfer function to study plant motions under the known external signals
and internal initial conditions. Also, we use these equations to solve inverse dynamic problem and
define speed controller transfer function which allows to get the desired drive motions.

2. Method

2.1. The Solution of Direct Dynamic Problem by using the Generalized Transfer Function for the Linear
Plant with Exactly-known Parameters

At first, let us consider the generalized single-input single output controllable plant which dynamic
is described with ordinary differential equations in normal form

d

dt
yj =

n∑
i=1

aijyi;
d

dt
yn =

n∑
i=1

ainyi + bnun, i = 1, ..., n− 1, (2.1)

here yi are plant state variables, aij and bn are plant factors which are defined as some functions of
its parameters and un is a control effort, n is the plant dimension.

We think that plant states can be observed by using system state observer. We consider this
observer as some dynamical system which motions depends on both observed object dynamic and
inner observer dynamic

d

dt
ŷj =

m∑
i=1

gij ŷi;
d

dt
yn +

n∑
i=1

cijyi +
m∑
i=1

diun, (2.2)

where ŷi are observer state variables and gij , cij , and di are observer factors, m is the observer dimen-
sion.
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Here we think that in the most general case the motions of plant and observer can have different
dimensions.

We call (2.2) as the differential observability equations which are the generalization of well-known
algebraic observability equations and take into account the various filters and other signal transform-
ing devices in the control system of the considered plant.

The usage of differential equations to define plant and observe dynamics rases the problem of
taking into account initial conditions for plant and observer. We call plant and observer motions
which starts with non-zero initial conditions, as initially-disturbed motions. Plant and observer are
called by us as initially-disturbed ones in this case. It is clear that these initial conditions should be
considered while the plant dynamic is being studied as well as its motion is being planned.

That is why we complete (2.1) and (2.2) with their initial conditions yi0, ŷi0 and rewrite the studied
dynamical system as follows

d

dt
yj = aijyi;

d

dt
yn =

n∑
i=1

ainyi + bnun, yi(0) = yi0, i = 1, ..., n− 1;

d

dt
ŷj =

m∑
i=1

gij ŷi +
n∑

i=1

cijyi +
m∑
i=1

diun, ŷi(0) = ŷi0, j = 1, ...,m.

(2.3)

We call (2.3) as the full controlled initially-disturbed plant equations in the normal form. These
equations are written down by using known physical laws and dependencies and they allows us to
study the real physical processes in the considered plant by its observable variables.

Let us apply Laplace-Carson transformation to plant and observer state variables

yi(t) → Yi(s); ŷi(t);→ Ŷi(s); un(t) → Un(s);

d

dt
yi(t) → sYi(s)− syi0;

d

dt
ŷi(t);→ Ŷi(s)− sŷi0,

(2.4)

here s is a Laplace operator.
One can use transformations (2.4) to rewrite (2.3) in the operator form

sYi(s)− syi0 =
n∑

i=1

aijYi(s), i = 1, ..., n− 1;

sYn(s)− syn0 =
n∑

i=1

ainYi(s) + bnUn(s);

sŶj − sŷj0 =
m∑
i=1

gij Ŷi(s) +
n∑

i=1

cijYi(s) +
m∑
i=1

diUn(S), j = 1, ...,m.

(2.5)

It is clear that contrary to known control methods and approaches, which are based on usage of
plant motions equations in the operator form, equations (2.5) allows us to take into account initial
states of plant and observer. The use of these initial states allows us to study, plan, and control of
plant motions in the correct way. At the same time, the use of classical approaches to design control
signals for initially-disturbed plant can cause reducing stability level for the plant closed-loop control
system.

One can use (2.5) in several ways.
The most trivial one to model the plant motion. In this case we assume that plant parameters and

input signal are known and plant state variables can be defined as solution of the first two equation
of system (2.5).

Let us write down these equations in matrix form as follows

sY = aY + bU + sy0, (2.6)
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where Y is a n-th sized vector of plant state variables, y0 is a n-th sized vector of plant initial states, a
is nxn-th sized matrix of plant factors which defined its free motion, and b is n-th sized vector of plant
controlled-motion factors. We use capitalized letters here to address Laplace-Carson transformation
for plant variables and the Laplace operator is skipped to improve formulas reading.

One can use (2.6) to define vector of plant state variables as a result of operator equation solution

Y = (sE − a)−1bU + (sE − a)−1sy0 = (sE − a)−1(bU + sy0), (2.7)

here power −1 means inverse matrix and E is an identity matrix.
Analysis of (2.7) allows us to make an obvious conclusion: plant motions depend on input signal

as well as initial conditions. Furthermore, the similarity of the first and second summands in (2.7)
allows us to consider initial conditions as an additional input signal and define generalized plant
input signal as follows

V2 =
(
bU sy0

)T
, (2.8)

The generalized control signal allows us to rewrite matrix plant motion equation in such a way

Y = (sE − a)−1E2V2,

E2 =
(
E E

)
.

(2.9)

One can use (2.9) to define following matrix transfer function

W (s) =
Y (s)

V2(s)
(sE − a)−1E2. (2.10)

We call this transfer function as the full generalized plant transfer function and consider it as nx2n-th
dimensional differential operator. One can use this operator to define plant motions which depends
on control inputs and initial states. It is necessary to say that the extension of control inputs vector
V2 (2.8) can cause wrong thinks about possibility to control plant by changing components of vector
sy0 during the plant operating time. To prevent this possible misunderstanding, we claim that the
components of initial states vector sy0 are defined only as scaled Heaviside step functions.

The next problem one can solve by using (2.5) is determination of the observer outputs. To solve
this problem let us rewrite the observer equation which is the third equation in (2.5) in matrix form

sŶ = gŶ + cY + dU + sŷ0 (2.11)

where Ŷ and ŷ0 are m-th sized vectors of observer state variables and its initial states, g is a mxm-
th sized matrix of observer free motion factors, c is a mxn-th sized matrix of plant-observer data
transmission channels, d is a m-th sized matrix of observer factors.

The solution of (2.11) is similar to (2.7)

Ŷ = (sE − g)−1(cY + dU + sŷ0). (2.12)

It is clear that the observer state vector Ŷ depends on the plant state vector Y . Let us exclude this
vector from our formulas by substituting (2.7) into (2.12)

Ŷ = (sEmm − g)−1([c(sEnn − a)−1b+ d]U + c(sEnn − a)−1sy0 + sŷ0). (2.13)

here Enn and Emm means nxn and mxm sized identity matrices.
Analysis of (2.13) allows us to claim that the observer motion is defined by input plant signal and

initial conditions of plant and observer. This quite trivial statement allows us to set up observer in a
correct way and avoid its free motions during synchronizing plant and observer at the beginning of
control system motion. It is clear that this fact can improve control system stability.

If one consider dynamical system plant-observer as subordinate multi-loop dynamical system, he
can generalizing of (2.13) and make following conclusions to define output of i-th dynamical loop:
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1. output vector depends on control signals and as many as i vectors of initial conditions;
2. the motion of i-th loop depends on this loop characteristic polynomial;
3. differential operator near U is defined by control dynamic components for each i-th loop;
4. differential operator near initial condition vector equal to s for i-th loop and take into account

loops interrelations for inner loops.

One can use these conclusions as the patterns to define the output for i-th dynamical loop. It is
necessary to say that we consider (2.13) as the extended form of expression for i-th loop output but it
can be defined in the compact form similar to (2.9) as well

Ŷ = (sEmm − g)−1E3V3,

E3 =
(
Emm Emm Emm

)
.

(2.14)

The generalized input vector V3 can be written down in extended form

V3 =
(
[c(sEnn − a)−1b+ d]U c(sEnn − a)−1sy0 sŷ0)

)
. (2.15)

and recursive one
V3 =

(
c(sEnn − a)−1E2V2 dU sŷ0

)
. (2.16)

Analysis of (2.14)-(2.16) and comparison these expression with (2.8)-(2.9) allows us to define follow-
ing extended

Yi =
i∏

j=1

(cj(sEjj − gj)
−1 + dj)U +

i∑
j=1

(
i∏

k=2

(cj(sEkk − gk)
−1)syj0, (2.17)

where ci is a factor vector which defines interrelations between loops and di is a vector of input
factors for i-th loop, Eii is an identity matrix of ixi size,

and recursive expressions to define components of i-th loop output vectors

Yi = (sEii − gi)
−1EiVi, Ei =

(
Eii Eii ... Eii

)
;

Vi = (ci(sE(i−1)(i−1) − gi−1)
−1Ei−1Vi−1diUsyi0).

(2.18)

The solution of (2.17) and (2.18) allows us to define motions of i-th loop in the considered dynami-
cal system. Moreover, one can use these formulas to define the generalized mx(im)-th dimensional
dynamical operator which can be considered as generalized transfer function for i-th loop

Wi(s) =
Yi
Vi

(sEii − gi)
−1Ei. (2.19)

The transfer functions (2.19) give us possibility to define i components of the i-th loop motions which
are caused by input signal and non-zero initial states. One can use following matrix transfer functions
to define each of these components

Wiu(s) =
Yiu
U

=
i∏

j=1

(cj(sEjj − gj)
−1 + dj);

Wij(s) =
Yij
yj0

=

j∏
k=2

(sEkk − gk)
−1s.

(2.20)

In this case resulted motions can be defined as the sum of the above-mentioned motions, which are
defined with (2.20). This fact allows us to claim, that any linear dynamical system with non-zero
initial conditions can be described with the following matrix operator expression

Yi = Wiu(s)U +
i∑

j=1

Wij(s)y0j . (2.21)
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Let us simplify (2.21). We take into account that components of all initial state vectors are weighted
Heaviside step functions and define some equivalent transfer function for initial state channel as
follows

Wie(s) = y−1
0q

i∑
j=1

Wij(s)y0j . (2.22)

here y0q is a q-th non-zero vector of initial states.
The use of (2.22) gives us possibility to rewrite (2.21) as follows

Yi = Wiu(s)U +Wie(s)y0q. (2.23)

Thus, the use of equivalent transfer function (2.22) makes it possible to define motion in the i-th loop
as the linear combination of the control signal U and only one vector of initial states y0q which are
weighted by some differential matrix operator WiU (s) and Wie(s).

2.2. The Solution of Inverse Dynamic Problem by using the Generalized Transfer Function for the Linear
Plant with Exactly-known Parameters

Since we define dynamical system output by known input signals one can consider the both of the
above-shown problem as the solutions of direct dynamic problem. Now let us consider the use of
above-given expressions to solve inverse dynamic solution which we call as the third way of using
(2.5).

At first, we show the main peculiarity of the inverse problem solutions for dynamical systems
with non-zero initial states by using expression (2.21) and (2.23). Then we consider these solution
more detail by using equations like (2.6).

The classical solution of inverse dynamic problem assumes that the plant motion Y is known
and it is necessary to define control signal which caused this motion. As it is mentioned before the
dynamic of considered system depends on both control signal and initial state. That is why we offer
to specify we inverse dynamic problem and consider its solution for both control signal U and initial
state.

We call the solution for control signal as the first kind of inverse dynamic problem solution. Here
we think that plant motion and its initial state are known and we define control signal which guar-
antees plant motion by known paths from known initial state. In the general case this solution can
be found if one solves (2.21)( for U

U = W−1
iU (s)(Yi −

i∑
j=1

Wij(s)y0j). (2.24)

If one finds similar solution for (2.23), he can rewrite (2.24) in such a way

U = W−1
iU (s)(Yi −Wie(s)y0q). (2.25)

Thus, the use of equivalent transfer function give us possibility to rewrite (2.24) in compact form
(2.25)

Contrary to classical approach the taking into account plant initial states allows us to define the
initial state from which plant moves by governing of some control signal. We call the solution of this
problem as the second kind of inverse dynamic problem solution and we use following expression
as the mathematical solution of this problem

y0q = W−1
iq (s)(Yi −WiU (s)U −

Q−i∑
j=1

Wij(s)y0j −
i∑

j=q+1

Wij(s)y0j), (2.26)
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here y0q is a initial state vector for q-th loop of the considered dynamical system.
Analysis of (2.26) shows that only one initial state vector can be defined at once. Other initial

state vectors should be defined or know. That is why we offer to solve this kind of inverse dynamic
problem as follows

Wie(s)y0q =

i∑
j=1

Wij(s)y0j = Yi −WiU (s)U. (2.27)

Such a solution makes a strong sense because the components of state vectors can be considered as
the scaling factors due to their constancy for all time range except the first one. Thus, the expression
(2.27) can be rewritten as follows

W
′
ie(s)1(s)sigmy0q =

i∑
j=1

Wij(s)y0j = Yi −WiU (s)U,

W
′
ie(s) = Wie(s)|y0q|,

(2.28)

where 1(s) is a i-th size vector of Heaviside functions.
Now we consider solutions of the first and second kinds inverse problems for the generalized

linear dynamical system which is given by as follows

sY = aY + bU + fsy0, (2.29)

here f is a nxn-th sized weight matrix of components of initial states vector.
The solution of (2.29) for U and y0 are trivial

U = b−1((sE − a)Y − fsy0);

y0 = f−1((sE − a)Y − bU)s−1.
(2.30)

The similar solution can be written down if one takes into account the generalizing vector input
signal

V =
(
U y0

)T
. (2.31)

and rewrite (2.29) in such a way
sY = aY +KE2V, (2.32)

where
K =

(
b sf

)
. (2.33)

The use of (2.32) and (2.33) makes it possible to redefine the generalizing vector input signal as fol-
lows

V = (KE2)
−1(sE − a)Y. (2.34)

It is clear that due to the general form of (2.29) the expressions (2.30) and (2.34) defines the most
general solution of the first and second kinds inverse dynamic solution. It is necessary to say that the
use of equations like (2.32) gives us possibility to solve both of inverse problems at the same time.
The main feature of this solution is using of non-square inverse matrix.

Let us specify these solutions for the above-considered plant (2.6) and observer (2.13) dynamical
systems.

We start our studies from the plant dynamic study. It is clear that the control signal and initial
state vector can be defined by using (2.30) with assumption that f is a nxn-th sized identity matrix

U = b−1((sE − a)Y − sy0);

y0 = s−1((sE − a)Y − bU).
(2.35)
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If one takes into account formulas (2.31)-(2.34), he can rewrite (2.35) as follows

U = b(b2 + f2s2)−1(sE − a)Y ;

y0 = fs(b2 + f2s2)−1(sE − a)Y.
(2.36)

Now let us turn our attention to study the observer dynamic. Since we consider the most generalized
observer, we can claim that its dynamic depends on the observer structure and its initial state ŷ0 as
well as external observed signals Y and external control plant signal U . This fact allows us to gen-
eralize inverse dynamic problem solution for the class of subordinate dynamical system and claim
that one can use motion equation of some dynamical system to define one external signal by motion
trajectory of the above-mentioned system and other external signals. Let us solve (2.11) for external
signals

Y = c−1((sE − g)Ŷ − dU − sŷ0);

U = d−1((sE − g)Ŷ − cY − sŷ0);
(2.37)

and vector of initial states
ŷ0 = s−1((sE − g)Ŷ − cY − dU); (2.38)

It is quite clear that signals (2.37) and (2.38) are defined by using vector of observer state variables
and others input signals. In case, when the use of others signals is not desired, one can rewrite (2.37)
and (2.38) in form similar to (2.36)

Y = c(c2 + d2 + s2)−1(sE − g)Ŷ ;

U = d(c2 + d2 + s2)−1(sE − g)Ŷ ;

y0 = s(c2 + d2 + s2)−1(sE − g)Ŷ .

(2.39)

Analysis of the above-given expressions shows that one can solve the inverse dynamic problem by
using both matrix and transfer function approaches. Since these approaches describe motions of the
same dynamical system, one get similar results by using various approaches.

3. Results and Discussion

3.1. DC Series Electric Drive Modeling

Let us consider the linearized differential equation of DC series electric drive.

d

dt
ω = −h

J
ω +

KKϕInom
J

Ia −
1

J
Tc;

d

dt
Ia =

KKϕInom
TaRa

ω − (
1

Ta
+

KKϕωnom

TaRa
)Ia +

1

RaTa
Ua,

(3.40)

where ω is a DC motor speed, Ia is a DC motor current, h is a friction factor, K is a constructive factor,
Kϕ is a linearization factor, J is a DC drive inertia, Tc is a DC drive load torque, Inom and ωnom is
a nominal current and speed of DC drive, Ra is an armature resistance, Ua is a DC voltage, Ta is an
electromagnetic constant

Ta =
La

Ra
, (3.41)

where La is an armature inductance.
We simplify (3.40) by taking into account (3.41) and following factors

a11 = −h

j
; a12 =

KKϕInom
J

; m1 = −1

j
;

a21 =
KKϕInom

TaRa
; a22 = − 1

Ta
−

KKϕωnom

TaRa
; m2 =

1

RaTa

(3.42)
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as follows
d

dt
ω = a11ω + a12Ia +m1Tc;

d

dt
Ia = a21ω + a22Ia +m2Ua,

(3.43)

Let as assume that the considered electric drive operates with some speed ω(0) and current Ia(0)
before its dynamic studying started. Moreover, we think that it is impossible to use any speed sensors
in our electric drive due to mechanical restrictions and that is why we observe the DC speed by using
current sensor with gain KI and voltage sensor with gain KU . The outputs of both of sensors are
filtered by using the simplest RC filter. These filters outputs can be defined in the following way

d

dt
ûi = − 1

RICI
ûi +

KI

RICI
Ia;

d

dt
ûU = − 1

RUCU
ûU +

KU

RUCU
Ua,

(3.44)

here RU , RI , CU , and CI are filters parameters.
Thus, we avoid noising of current and voltage signals by replacing real state variables Ia and Ua

with filtered ones ûi and ûU .
The second Kirchhoff rule for the DC armature circuit in steady state allows us to define DC speed

in such a way

ω =
Ua − IaRa

KKϕInom
. (3.45)

If one takes into account filtered variables of DC electric drive, he can rewrite (3.45) in such a way

ω =
1

KKϕ

ûU
KU

− Ra

KKϕ

ûi
KI

. (3.46)

Let us rewrite (3.46) by taking into account following factors

d1 =
1

KKϕKU
; c1 = − 1

KKϕKI
(3.47)

as follows
ω̂ = d1ûU + c1ûi. (3.48)

We consider (3.44) and (3.48) with factors (3.47) as speed observer equations with observer state
vector

ω̂ =
(
ω̂ ûI ûU

)
. (3.49)

Since we assume that DC drive operates before its studying is being started, we think that state vector
(3.49) has non-zero initial state

ω̂(0) =
(
ω̂(0) ûI(0) ûU (0)

)
. (3.50)

We consider DC drive equations (3.43) and observer equations (3.44) and (3.48) as the differential-
algebraic equations of the dynamical system “control plant-observer” with initial condition vector
(3.50).

Since the above-given theoretical backgrounds operates with differential equations let us rewrite
observer equation (3.48) into differential form

d

dt
ω̂ = a52Ia + a53ûi + a54ûU +m5Ua, (3.51)
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where

a52 =
c1KI

RICI
; a53 = − c1

RICI
; a54 = − d1

RUCU
; m5 = − d1KU

RUCU
(3.52)

We take into account Laplace-Carson transformation for linear differential equations with non-zero
initial states and rewrite the system which dynamic is defined by (3.44), (3.48) with (3.47) and (3.51)
with (3.52) into operator form

sω̂ = a11ω + a12Ia +m1Tc + sω̂(0);

sIa = a21ω + a22Ia +m2Ua + sIa(0);

sûi = a3ûi + a32Ia + sûi(0);

sûU = a44ûU +m4Ua + sûU (0);

sω̂ = a52Ia + a53ûi + a54ûU +m5Ua + sω̂(0).

(3.53)

Analysis of (3.53) shows that the use of observer cause to considering of studied DC electric drive
with speed observer as multichannel dynamical system.

Let us rewrite (3.53) into matrix form

sY = AY +MU + sY, (3.54)

here

Y =
(
ω Ia ûi ûU ω̂

)T
; U =

(
Tc Ua

)T
;

Y0 =
(
ω (0) Ia (0) ûi (0) ûU (0) ω̂ (0)

)T
.

(3.55)

A =


m1 0
0 m2

0 0
0 m4

0 m5

 ;A =


a11 a12 0 0 0
a21 a22 0 0 0
0 a32 a33 0 0
0 0 0 a44 0
0 a52 a53 a54 0


One can use (3.54) with (3.55) to study the considered system dynamic as well as its steady state,
define its frequency responses, design controller and more.

3.2. Solution of Direct Dynamc Problem

Let us solve direct dynamic problem for the system (3.54). It is understood that this solution in the
matrix form can be written down as follows. Matrix expression (56) allows us to define full state
space vector Y which components depend on input signals vector U, initial state vector Y0, and
system parameters matrices A and M.

Y = (sE −A)−1(MU + sY0) (3.56)
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Matrix expression (56) allows us to define full state space vector Y which components depend on
input signals vector U, initial state vector Y0, and system parameters matrices A and M.

ω =
m1sTc −m1a22Tc + a12m2Ua + s2ω(0)− a22sω(0) + a12sIa(0)

q11q22 − q12a21 − (a11 + q22)s+ s2
;

Ia =
a21m1Tc +m2sUa − a11m2Ua + q21sω(0) + s2Ia(0)− a11sIa(0)

q11q22 − q12a21 − (a11 + q22)s+ s2
;

ûi =
a32a21m1Tc − a32m2sUa + a11a32m2sUa + q32a21sω(0)− a32s

2Ia(0) + a11a32sIa(0)

(a12a21 − a11a22)a33 + (a11a22 + a11a33 + a22a33 − a12a21)s− (a11 + a22 + a33)s2 + s3
+

sûi(0)

s− a33
;

ω̂ =
a21 (a32a53 − a33a52 + a52s)m1Tc + a21 (a32a53 − a33a52 + a52s)ω (0)

(a12a21 − a11a22) a33 + (a11a22 + a11a33 + a22a33 − a12a21) s− (a11 + a22 + a33) s2 + s3
−

− (a11a32a53 − a11a33a52 + (a11a52 − a32a53 + a33a52) s− a52s
2)Ia (0)

(a12a21 − a11a22) a33 + (a11a22 + a11a33 + a22a33 − a12a21) s− (a11 + a22 + a33) s2 + s3
−

− (a11a32a53 − a11a33a52 + (a11a52 − a32a53 + a33a52) s− a52s
2)m2Ua

(a12a21 − a11a22) a33s+ (a11a22 + a11a33 + a22a33 − a12a21) s2 − (a11 + a22 + a33) s3 + s4
+

+
a53ui (0)

s− a33
+

a54m4Ua

s2 − a44s
+

ûU (0)

s− a44
+

m5Ua

s
+ sω̂ (0)

(3.57)
Analysis of (57) allows us to study effect of each input signal. Contrary to well-known control
approach, which is based on transfer function usage, out approach allows to take into account
system initial state while its dynamic is being studied. If one consider the first and second expression
of (57) in details he finds well-known summands, which defines input signals influence, in these
expressions.
Nevertheless, the analysis of full system shows that its multichannel nature causes different transfer
functions as well as different characteristic polynomial for various state variables. Moreover,
observed speed equation dramatically differs unobserved one. From one hand it causes the necessity
to check stability of each channel of the considered system, from another one it makes possibility to
effect on system output variable in a wide range by defining observer parameters.
The last three expressions define observer dynamic as the combinations of system input signals and
its initial states. Moreover, it is clear that the dynamic of observer subsystem depends on initial
states of both DC drive and observer.
This fact makes observer studies more complex. To simplify the study of the considered observer
dynamic let us define its motions as the function of input signals, initial conditions and DC drive
state variable

sûi = a33ûi+b32Ia+sûi(0);

sûU = a44ûU +m4Ua + sûU (0) ;

sω̂ = b52Ia + a53ûi + a54ûU +m5Ua + sω̂ (0) ,

(3.58)

here

b3 = a32; b5 = a52 (3.59)

It is clear that for plant (58) with factors (59) observer dynamic can be defined by the following matrix
equation

sŶ = ÂŶ + B̂Ŷ + M̂Ua + sŶ0, (3.60)
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where
Y =

(
ω Ia

)T
; Ŷ =

(
ûi ûU ω̂

)T
;

Ŷ0 =
(
ûi (0) ûU (0) ω̂ (0)

)T
;

Â =

a33 0 0
0 a44 0
a53 a54 0

 ; M̂ =

 0
m4

m5

 ; B̂ =

0 b32
0 0
0 b52

 .

(3.61)

Solution of (60) is a clear one

Ŷ =
(
Ês− Â

)−1 (
B̂Y + M̂Ua + sŶ0

)
. (3.62)

If one takes into account (61) he can rewrite (62) in the extended form

ûi =
b32

s−a33
Ia +

s

s−a33
ûi (0) ; ûU =

m4

s−a44
Ua +

s

s−a44
ûU (0) ;

ω̂ =

(
b52
s
+

a53b32
s2− a33s

)
Ia +

(
m5

s
+

a54m4

s2− a44s

)
Ua +

a53
s−a33

ûi (0) +
a54

s−a44
ûU (0) + ω̂ (0) .

(3.63)

Thus, expressions (57) and (63) allows us to define each system state variable as linear combinations
of its variables and initial states which are weighted with some differential operators

ω =
m1 (s− a22)

a11a22 − a12a21 − (a11 + a22) s+ s2
Tc +

a12m2

a11a22 − a12a21 − (a11 + a22) s+ s2
Ua+

+
(s− a22) s

a11a22 − a12a21 − (a11 + a22) s+ s2
ω (0) +

a12s

a11a22 − a12a21 − (a11 + a22) s+ s2
Ia (0) ;

Ia =
a21m1

a11a22 − a12a21 − (a11 + a22) s+ s2
Tc +

m2 (s− a11)

a11a22 − a12a21 − (a11 + a22) s+ s2
Ua+

+
a21s

a11a22 − a12a21 − (a11 + a22) s+ s2
ω (0) +

(s− a11) s

a11a22 − a12a21 − (a11 + a22) s+ s2
Ia (0) ;

(3.64)

ûi =
b32

s−a33
Ia +

s

s−a33
ûi (0) ; ûU =

m4

s−a44
Ua +

s

s−a44
ûU (0) ;

ω̂ =
b52s− a33b52 + a53b32

s2 − a33s
Ia +

m5s−m5a44 + a54m4

s2− a44s
Ua +

a53
s−a33

ûi (0) +
a54

s−a44
ûU (0) + ω̂ (0)

Let us define differential operators in (64) as components of matrix transfer function

W11 =
m1 (s− a22)

a11a22 − a12a21 − (a11 + a22) s+ s2
;W12 =

a12m2

a11a22 − a12a21 − (a11 + a22) s+ s2
+

W13 =
(s− a22) s

a11a22 − a12a21 − (a11 + a22) s+ s2
;W14 =

a12s

a11a22 − a12a21 − (a11 + a22) s+ s2
;

W21 =
a21m1

a11a22 − a12a21 − (a11 + a22) s+ s2
;W22 =

m2 (s− a11)

a11a22 − a12a21 − (a11 + a22) s+ s2
;

W23 =
a21s

a11a22 − a12a21 − (a11 + a22) s+ s2
;W24 =

(s− a11) s

a11a22 − a12a21 − (a11 + a22) s+ s2
;

W35 =
b32

s−a33
;W36 =

s

s−a33
;W42 =

m4

s−a44
;W47 =

s

s−a44
;W55 =

b52s− a33b52 + a53b32
s2 − a33s

;

W52 =
m5s−m5a44 + a54m4

s2− a44s
;W56 =

a53
s−a33

;W57 =
a54

s−a44
;W58 = 1

(3.65)
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and take into consideration the generalized input vector

V =
(
Tc Ua ω (0) Ia (0) Ia ûi (0) ûU (0) ω̂ (0)

)T (3.66)

as well as the generalized state vector

Y =
(
ω Ia ûi ûU ω̂

)T (3.67)

The use of expressions (65), (66), and (67) allows us to rewrite (64) in terms of the generalized matrix
transfer function

Y = W (s)V, (3.68)

here

W (s) =


W11 W12 W13 W14 0 0 0 0
W21 W22 W23 W24 0 0 0 0
0 0 0 0 W35 W36 0 0
0 W42 0 0 0 0 W47 0
0 W52 0 0 0 W56 W57 W58

 (3.69)

It is clearly understood that transfer function (69) allows us to simplify the system dynamic describ-
ing. This transfer function in a clear way defines interconnections between plant and its observer.
That is why drive current Ia is considered in both ways as the state variable in vector Y and input
variable for the observer in vector V. This fact increases the size of the considered matrix transfer
function. So, if interconnections between the observer and drive is not necessary to study, one can
decrease size of the input vector (66) and matrix transfer function (69) if defines them by using (57).
In this case input vector can be written down as follows

V ′ =
(
Tc Ua ω (0) Ia (0) ûi (0) ûU (0) ω̂ (0)

)T
. (3.70)

The components of the generalized transfer matrix in the first two rows should not be changed and
other components are defined in such a way

W ′
11 = W11; W ′

12 = W12; W ′
13 = W13; W ′

14 = W14;

W ′
21 = W21; W ′

22 = W22; W ′
23 = W23; W ′

24 = W24;

W ′
31 =

a32a21m1

D3 (s)
; W ′

32 =
a32m2 (a11 − 1) s

D3 (s)
; W ′

33 =
a32a21s

D3 (s)
;

W ′
34 =

a32s (a11 − s)

D3 (s)
; W ′

35 =
s

s− a33
;

W ′
42 =

m4

s− a44
; W ′

46 =
s

s− a44
; W ′

51 =
a21(a32a53 − a33a52 + a52s)m1

D3 (s)
;

W ′
52 = −(a11a32a53 − a11a33a52 + (a11a52 − a32a53 + a33a52) s− a52s

2)

D3 (s)
+

a54m4

s2 − a44s
+

m5

s
;

W ′
53 =

a21(a32a53 − a33a52 + a52s)

D3 (s)
; W ′

55 =
a53

s− a33
; W ′

56 =
1

s− a44
; W ′

57 = s;

W ′
54 = −(a11a32a53 − a11a33a52 + (a11a52 − a32a53 + a33a52) s− a52s

2)

D3 (s)
,

(3.71)

here

D3 (s) = (a12a21 − a11a22) a33 + (a11a22 + a11a33 + a22a33 − a12a21) s− (a11 + a22 + a33) s
2 + s3.

(3.72)
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Matrix components (71) allow us to rewrite (69) in such a way

W ′ (s) =


W ′

11 W ′
12 W ′

13 W ′
14 0 0 0

W ′
21 W ′

22 W ′
23 W ′

24 0 0 0
W ′

31 W ′
32 W ′

33 W ′
34 W ′

35 0 0
0 W ′

42 0 0 0 W ′
46 0

W ′
51 W ′

52 W ′
53 W ′

54 W ′
55 W ′

56 W ′
57

 (3.73)

and taking into account (70) defines system dynamic as follows

Y = W ′ (s)V ′. (3.74)

In such a way one can consider both of (74) and (68) as the solution of direct dynamic problem in the
general case.

3.3. Solution of Inverse Dynamic Problem

It is clear that both of the first and the second kinds inverse dynamic problems can be solved by
using (53) and assuming that the components of system state vector are known and input voltage,
load torque or initial states should be defined.
It is necessary to say that the number of equations in (53) less than number of input signals and initial
states one can solve only one kind of inverse problem at once by using (53). It is quite inconvenient
and that is why instead of making solution of (53) and all transformations we remark that we have
already found solution for direct dynamic problem as the matrix expressions (74) and (68). The
inversion of these expressions allows us to define the generalized input vectors V and V’.

V = W−1 (s)Y ; V ′ = W ′−1 (s)Y. (3.75)

Non-square inverse matrix we define in such a way

W−1 (s) = WT (s) (W (s)W (s))−1 ;

W ′−1 (s) = W ′T (s)
(
W′ (s)W′T (s)

)−1
.

Due to the complexity of the obtained expressions we do not show them here but claim that the
modern mathematical software, which perform symbolic calculations, define them in a simple way.
Analysis of above-given formulas shows that the proposed approach which is based on using the
generalized matrix transfer function allows us to solve direct at inverse dynamic problems for any
linear dynamical systems with non-zero initial states. Since very formal methods mathematical are
used one can easy implement our approach by using modern mathematical software with symbolic
calculations like Mathsoft Matlab, Waterloo Maple, SageMath and similar ones.
From our viewpoint the main drawback of our approach is the considering of linear systems with
exactly-known constant parameters. Since the parameters of many real technical systems changes
during their operation modes, our formulas can be inapplicable here. This drawback can be avoided
by using various interval methods which allows us to give some uncertainty to our equations and
thus to take into account possible parameters changing.
Also, it should be mentioned about nonlinearity of real technical systems and inapplicability of
Taylor-based linearization for these systems. That is why we mark one more possible way to de-
veloping our approach is adopting it to nonlinear differential equations and replacing linear differ-
ential operators with nonlinear ones as well as using piecewise linear functions to describe system
nonlinearities.

104



Solution of Direct and Inverse Dynamic Problem for the Previously Disturbed Dynamical Systems

4. Conclusions

The generalization of transfer function as the matrix linear differential operator makes it possible to
take into account not only system control signal and external disturbances but also allows to consider
system initial state. Such system dynamic describing is a very formal and allows in strong mathemat-
ical way define system direct and inverse dynamic. Since the proposed approach is based on matrix
methods one can use it to operate with wide range single-channel and multi-channel dynamical sys-
tem and define theirs motions or input signals at once and consider full system motions or motions
of each subsystem in which the system can be split. The forces which cause the above-mentioned
motions can be defined as well.
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