
J. DIFERENSIAL/E-ISSN:2775-9644
Vol.6(2),2024, 124–140 doi:https://doi.org/10.35508/jd.v6i2.15346

RESEARCH ARTICLE

Dynamics of COVID-19 Incorporating Preventive Measures
and Treatment

Eirene O. Arierhie1, Eloho B. Akponana2, Ngozika J. Egbune3, Akindele M. Okedoye4,*

1,2,3,4Department of Mathematics, Federal University of Petroleum Resources, Effurun, Nigeria
1oshevwiyozy2017@gmail.com

*Corresponding author: okedoye.akindele@fupre.edu.ng

Received: 27 March 2024; Revised: 30 April 2024; Accepted: 23 May 2024; Published:4 June 2024.

Abstract:
The surge of Coronavirus disease (COVID-19) was felt all over the world greatly after it was de-
clared a pandemic in the year 2020. After 3 years in 2023, the disease passed the pandemic phase and
entered an endemic phase. But that didn’t reduce the global threat of the disease as the disease con-
tinues to still claim lives daily. In this work, we examined the dynamics of the coronavirus disease
from a mathematical view using a deterministic SEIAISQVRIPLP model. This consists of investi-
gating the disease-free and endemic equilibria, basic reproduction number and stability. The local
stability of the disease-free equilibrium was determined by solving the Jacobian matrix of the system
of differential equations while the basic reproduction number was calculated using the next gener-
ation matrix method. Numerical simulations to determine the active factor(s) in the transmission,
preventive and possible elimination of the disease were carried out using a computational software
called Maple. It was revealed that over time when all modalities are out into place the rate of recovery
increases and as the rate of the pathogen virus death increases, the pathogen virus gradually fades
from the environment.
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1. Introduction

Throughout history, there has been occurrences of various diseases with each one’s level varying.
One of such diseases is Coronavirus also known as COVID-19 which is caused by a novel virus
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In December 2019, the first cases
of the disease were reported in Wuhan, China. By January 2020, the disease had spread to other
countries, and the World Health Organization (WHO) declared the COVID-19 outbreak as a global
health emergency. It was declared as a pandemic by WHO on March 11, 2020 [1]. It is believed to have
originated from a seafood and wet animal market in which the first victims contacted the disease.
Scientists gave the virus its name due to research showing genetic similarities in bat coronaviruses.
The virus spreads mainly between people who are in close contact with each other, for example a
conversational distance. The virus can spread from an infected person’s mouth or nose in small
liquid particles when they cough, sneeze, speak, sing or breathe.
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Table 1.1: Description of Parameters

Parameters Biological significance Values

b birth rate 0.00018
µ natural death rate 0.1724
α1 proportion of interaction with an infectious environment 0.1
α2 proportion of interaction with an infectious individual 0.1
β1 rate of transmission from S to E due to contact with P 0.00414
β2 rate of transmission from S to E due to contact with IA

and/or IS
0.0115

φ progression rate from E back to S due to robust immune
system

0.0051

δ proportion of symptomatic infectious people 0.05
ω progression rate from E to either IA or IS 0.09
σ disease induced death rate 0.0018
γS rate of recovery of the symptomatic population 0.05
γQ rate of recovery of the quarantined population 0.1
γA rate of recovery of the asymptomatic population 0.0714
ηS rate of virus spread to the environment by symptomatic

infectious individuals
0.1

ηA rate of virus spread to the environment by asymptomatic
infectious individuals

0.05

λ rate of transmission from R to S due to recovery from the
disease

1
14

c vaccine effectiveness 0.5
τ5 progression rate from symptomatic infected class to

quarantined class
0.04

τ2 progression rate from asymptomatic infected class to
quarantined class

0.04

τ6 progression rate from symptomatic infected class to
vaccinated class

0.02

µP natural death rate of the pathogen 0.1724
τ3 progression rate from asymptomatic infected class to

vaccinated class
0.02

m progression rate from Q to either V or R 0.3
σ1 rate of treated humans 0.0018
σ2 rate of recovered humans 0.0018
dv positive 12-month periodic continuous function 0.02
β positive 12-month periodic continuous function 0.01

Another person can contract the virus when infectious particles that pass through the air are
inhaled at short range (this is often called short-range airborne transmission) or if infectious particles
come into direct contact with the eyes, nose or mouth (droplet transmission). It can also be spread in
poorly ventilated and/or crowded indoor settings, where people spend longer periods of time (this
is often called long-range airborne transmission). People may also become infected when touching
their eyes, nose or mouth after touching surfaces or objects that have been contaminated by the virus
[2]. The severity of COVID-19 symptoms can range from very mild to severe. Some people may have
only a few symptoms while some may have no symptoms at all, but can still spread it. This is called
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asymptomatic transmission. Some people may experience worsened symptoms such as pneumonia
or respiratory failure [3].

Several researchers have worked on the transmission dynamics of Covid-19 using various numer-
ical techniques. The dynamics of local outbreaks of COVID-19 by developing a SEIQR type determin-
istic model which uses a system of ordinary differential equations was analysed by [4]. From the data
gotten from the outbreak in Hubei they were able to predict the trajectory of daily cases, daily deaths,
and other features of the Hubei outbreak. Through numerical experiments they observed the effects
of quarantine, social distancing, and COVID-19 testing on the dynamics of the outbreak. Din and
Algehyne (2021) developed a Covid-19 SIR model containing three classes; Susceptible S(t), Infected
I(t), and Recovered R(t) with the convex incidence rate. The disease-free and endemic equilibrium
were calculated for the model as well as the basic reproduction number. Also, the Global Stability
was calculated using the Lyapunov Function construction, while the Local Stability was determined
using the Jacobian matrix, while [5] worked on the impact of various non-pharmaceutical control
measures both government and personal on the population dynamics of the novel coronavirus dis-
ease 2019 (COVID-19) in Lagos, Nigeria, using an appropriately formulated mathematical model.
They used numerical stimulations to show the effect of control measures on the dynamics of Covid
while [6] developed a mathematical model to understand the transmission dynamics and control of
Covid-19 in Nigeria, one of the epicenters of Covid-19 in Africa. The epidemiological implication
of the result showed that the pandemic can be effectively controlled or even eliminated in Nigeria if
the control strategies implemented can bring and maintain the epidemiological threshold (Ro) to a
value less than unity. It was however shown that Covid-19 can be effectively controlled using social
distancing measures provided its effectiveness level is at least moderate.

Also, in considering the grave implications of the continuous spread of coronavirus disease, A
SEIHRD epidemic model which consisted of the Susceptible, Exposed, Infected, Hospitalized, Re-
covered and Deceased individuals was formulated [7], to gain insight into the disease transmission
dynamics with impacts of proposing control measures. The model captured the impact of undetected
infectious individuals and detected hospitalized individuals with saturated treatment on the spread,
death and recovery of Covid-19 patients in Nigeria. Results obtained suggested that decreasing the
transmission rate for infective alone is not sufficient to eradicate the disease because of the presence
of backward bifurcation, and recommended that Nigerians must also adhere strictly to COVID-19
protocols in mitigating the spread and demise of the coronavirus disease. A SEAIQR model to exam-
ine the transmission mechanism of COVID-19 among humans was developed by [8]. The population
was distributed into Susceptible, Exposed, Asymptomatic Infected,Symptomatic Infected, Quaran-
tined and Recovered humans respectively. The existence and stability of disease-free equilibrium
were established. Results showed that the effectiveness of control measures (reducing contact rate
and usage of face mask) when being applied. It is noticed that the best option is to observe social dis-
tance against the use of a mask. The effective approach is the compliance with both control measure
which are social distancing and usage of mask. It was recommended that there should be educational
campaigns on the impact of embracing social distancing, wearing a mask, need to be vaccinated as
well as the enforcement and sanctions for non-compliance with the control measures. Other relevant
works by researchers on Covid can be found in [9],[10],[11],[12],[13] and [14].

Despite the contributions of the aforementioned authours and several other ones, research on
COVID-19 transmission dynamics, incorporating preventive measures and treatment, is essential to
address research gaps regarding the effectiveness of interventions, long-term implications on public
health and healthcare systems, vaccine efficacy, and the adaptation of healthcare systems, informing
evidence-based policies to mitigate the spread and minimize its impact on communities.
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2. Mathematical/ Problem Formulation

In this current study, we modified the work of [15] to include transmission dynamics, severity of
the virus on human population, quarantine, vaccination, and disease induced death rate. We shall
also make use of available data to suggest and predict the dynamics of the disease in the future. To
study the spread rate of the disease among humans and the environment, we developed a model
in which the total human population at time t, denoted by Nh(t), is split into a mutually exclusive
sub-populations of susceptible humans (S(t)), Exposed humans E(t), Quarantine on exposed hu-
mans Q(t), Vaccinated humans V (t) asymptomatic infectious humans IA(t), symptomatic infectious
humans (IS(t)), and recovered humans (R(t)). The virus pathogen class denoted P (t) is divided
into two classes viz: the latent class LP (t) and infectious class IP (t) class and it is assumed to have
interaction between exposed, and infected classes.

Thus, we have total human population Nh(t) and pathogen population P(t) defined respectively:

Nh(t) = S(t) + E(t) +Q(t) + V (t) + IS(t) + IA(t) + R(t)

P (t) =LP (t) + IP (t)
(2.1)

The human population is born into susceptible population at a rate b. The terms β1S(IP + LP )
and β2S(IA + IS) describe the rate at which susceptible individuals S(t) gets infected by pathogens
in the environment LP (t) and IP (t) respectively and from infectious human IA(t) and IS(t) respec-
tively. Health experts and governments have been advising people, during this outbreak, to min-
imize contact with infectious individuals through social distancing. But it is extremely difficult if
not impossible to identify infectious individuals except those who are symptomatic. Therefore, as
proposed by [15], we assume to have a new infection respectively in the form

β1S(IP + LP )

1 + α1IP
and

β2S (IA + IS)

1 + α2IP

Where the interaction proportion α1 and α2 denotes reciprocal of the frequency with which sus-
ceptible individuals gets infected with Covid-19 from the environment and from infectious individ-
uals, respectively.

Assumptions: Taking all the sub-classes enumerated above into consideration, we assume the
following:

1. We assume that those in the Q(t) and V (t) are completely isolated and do not come in contact
with the general population.

2. The migration rate to the community increases the total population.
3. Recovered population could still become susceptible.
4. Exposed persons could either be symptomatic or asymptomatic after exposure.
5. Either symptomatic or asymptomatic could be vaccinated or quarantine.
6. Both susceptible and exposed persons could also be vaccinated or quarantine.
7. Exposed, asymptomatic, symptomatic, quarantine, could recovered fully due to natural immu-

nity.
8. When the natural immunity wane, the recovery becomes partial recovery.
9. Symptomatic or asymptomatic humans could recover or die due to the disease, every other

person in the system could die a natural death.

Owing to the above assumption, the compartmental block diagram represented below, shows the
interaction within the community.
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Figure 2.1: Model Compartmental Diagram

Mathematically, these interactions are described by a system of ordinary differential equations as
shown below:

dS
dt

=b+ λR+ φE −
(
β1S (IP + Lp)

1 + α1IP
+

β2S (IA + IS)

1 + α2IP

)
− µS, (2.2)

dE

dt
=

(
β1S (IP + Lp)

1 + α1IP
+

β2S (IA + IS)

1 + α2IP

)
− φE − µE − δωE − (1− δ)ωE, (2.3)

dIA
dt

=(1− δ)ωE − τ3IA − γAIA − τ2IA − (µ+ σ)IA − ηAIA, (2.4)

dIS
dt

=δωE − τ6IS − τ5IS − (µ+ σ)IS − ηSIS − γSIS , (2.5)

dQ

dt
=τ5IS + τ2IA −mγQQ− (µ+ σ)Q− (1−m)γQQ, (2.6)

dV

dt
=mγQQ+ τ6IS + τ3IA − cV − (µ+ σ)V, (2.7)

dR
dt

=cV + γAIA + γSIS + (1−m)γQQ− λR− µ (2.8)

dLP

dt
=ηSIS + ηAIA − H(t)

Nh(t)
LP − (dvβ + µP )Lp (2.9)

dIP
dt

=
H(t)

Nh(t)
LP − (dvβ + µP ) Ip (2.10)

where, H(t) and Nh(t) are respectively define by;

H(t) = Ih(t) + σ1Th(t) + σ2Rh(t) and

Nh(t) = S(t) + E(t) +Q(t) + V (t) + IS(t) + IA(t) + R(t)

In Figure 2.1, we have the following denotations with the biological significance defined in the
table of parameters, Table 1.1.

T1 =
β1S (IP + Lp)

1 + α1IP
+

β2S (IA + IS)

1 + α2IP
, T4 = (1− δ)ωE, T2 = τ2, T3 = τ3, T5 = τ5, T6 = τ6
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3. Method of Solution

3.1. Equilibrium States

Equilibrium points in epidemiology refer to stable states in disease dynamics where the number of
individuals infected with a disease remains constant over time. These points represent a balance
between the factors driving disease transmission (such as contact rates and infectiousness) and those
reducing transmission (such as immunity or intervention measures). Equilibrium points can occur
at different levels of disease prevalence, including no infection (disease-free equilibrium) or a sta-
ble level of infection (endemic equilibrium). We examine both the Disease-Free Equilibrium Point
(DFEP) and Endemic Equilibrium point in a bid to assess the effectiveness of interventions in con-
trolling infectious diseases.

3.1.1. The Disease-Free Equilibrium Point (DFEP)

This represents the average size of each of the compartments when the entire population is free
from the infection. It is denoted by E0. We obtain E0 by equating the right-hand side of the model
equations to zero and solving the resulting algebraic system of equations. Since we are considering
the disease-free equilibrium point, we put IA = IS = LP = IP = 0, which implies that E = Q = V =
R = 0. We then have:

S =
b

µ

Therefore E0 =
(

b
µ , 0, 0, 0, 0, 0, 0, 0, 0

)

3.1.2. The Endemic Equilibrium Point (EEP)

The endemic equilibrium point is the average size of each of the model compartments, when the
disease has become part of the human population. The model admits an endemic equilibrium Ee =
(S, E, IA, IS , Q, V, R, LP , IP )e when IA > 0, IS > 0, LP > 0, IP > 0. Ee is obtained by equating
the right-hand side of the model equations to zero and solving the corresponding system. Thus, we
obtain the following result:

Ee = (S,E, IA, IS , Q, V,R, LP , IP ) =

(
b

µ
, 0, 0, 0, 0, 0, 0, 0, 0

)
,(

S0 + k6IS ,
k2
δω

IS ,
(1− δ)k2

k1δ
IS ,−

n1 ∓
√

n2
1 − 4n0n2

2n2
, k3IS , k4IS , k5IS ,

k8S0 + k8

(
k6 +

k2
δω + k7

)
IS

S0 + k9IS
, T1

(
S0 + k6 +

k2
δω + k7

)
IS(

S0 +
(
k6 +

k2
δω + k7

)
IS

)
(S0 + k9IS)
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where

k3 =
δk1τ5 + τ2(1− δ)k2
δk1(µ+ σ + γQ)

, k4 =
δk1(mγQk3 + τ6) + τ3(1− δ)k2

δk1(c+ µ+ σ)
,

k5 =
ck4 +

γA(1−δ)k2
δk1

+ γS + (1−m)γQk3

λ+ µ
, k6 =

δωλk5 − (µ+ ω)k2
µδω

,

k7 =
(1− δ)k2

δk1
+ 1 + σ1(k3 + k4) + σ2k5, k8 =

δk1ηS + ηA(1− δ)k2
δk1

,

k9 =

(
k6 +

k2
δω

+ k7

)
(dvβ + µP + k7) , T1 =

k7k8
dvβ + µP

, n0 = s20β1T1 −
s0β2k2(1− δ)

δk1
,

n1 = s0k7β1T1 + s0β1T1
k2
δω

+ s0β1T1k6 +
s0β2k2(1− δ)

δk1
+

β2k2(1− δ)
(
k6 +

k2
δω + k7

)
s0

δk1

−

((
k6 +

k2
δω + k7

)
s0 + s0α1T1

)
(φ+ µ+ ω)k2

δω
,

n2 = k7β1T1k6 +
β2k2(1− δ)

(
k6 +

k2
δω + k7

)
k9

δk1

−

((
k6 +

k2
δω + k7

)
k9 + α1T1k7

)
(φ+ µ+ ω)k2

δω
;

Hence, there exist three (3) equilibrium points:

1. the first correspond to the Disease Free Equilibrium
2. the second correspond to

IS = −n1 −
√
n2
1 − 4n0n2

2n2
(3.11)

owing to positivity of parameters, is a feasible endemic equilibrium point
3. the third correspond to

IS = −n1 +
√
n2
1 − 4n0n2

2n2
(3.12)

gives a negative values, which is not feasible

3.2. The Basic Reproduction Number

The basic reproduction number is the average number of secondary infections caused by a single
infectious individual in an entirely susceptible population during his/her infective period. The next
generation matrix approach is used to obtain R0. Here we shall consider the classes that have infec-
tions excluding the quarantined and vaccinated classes. These two classes are excluded as a result of
being the treatment classes because it is assumed that they no longer have the disease after receiv-
ing treatment. The latent class of the pathogen is also considered because it introduces the disease
into the pathogen class and is also the incubation period for the virus. Suppose X is the set of the
infectious classes, then we can write:

X(t) = (E, IA, IS , LP , IP ) and obtain that X
′
(t) = F(t)−V(t), where:

F(t) =


β1S(IP+Lp)

1+α1IP
+ β2S(IA+IS)

1+α2IP
0
0

ηAIA + ηSIS
0
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and

V(t) =


−(φ+ µ+ ω)E

(1− δ)ωE − (τ3 + γA + τ2 + µ+ σ + ηA)IA
δωE − (τ6 + τ5 + µ+ σ + ηS + γS)IS

−( H(t)
Nh(t)

− (dvβ + µP ))Lp

H(t)
Nh(t)

LP − (dvβ + µP ) Ip


Evaluating the derivatives of F and V at the disease-free equilibrium point obtained above, yields
FV−1 as seen below:

FV−1 =


β2b(−1+δ)ω

µde − β2bδω
µdf −β2b

µe −β2b
µf −β1b

µa −β1b
µa

0 0 0 0 0
0 0 0 0 0

ηA(−1+δ)ω
de − ηSδω

df −ηA
e −ηS

f 0 0

0 0 0 0 0


where,

d = (φ+ µ+ ω), e = (τ3 + γA + τ2 + µ+ σ + ηA),

f = (τ6 + τ5 + µ+ σ + ηS + γS) , a = βdv + µP .

By solving the dominant eigenvalue of the next generation matrix FV−1, we get the basic reproduc-
tion number to be

R0 =
β2b(−1 + δ)ω

µ de
− β2bδω

µdf
=

fβ2b(−1 + δ)ω − eβ2bδω
µdef

Therefore, the basic reproduction number of the given system of equations denoted by R0 is:

R0 =
(τ6 + τ5 + µ+ σ + ηS + γS)β2b(−1 + δ)ω − (τ3 + γA + τ2 + µ+ σ + ηA)β2bδω

µ(φ+ µ+ ω)(τ3 + γA + τ2 + µ+ σ + ηA)(τ6 + τ5 + µ+ σ + ηS + γS)

3.3. Local Stability of the Disease-free Equilibrium

We shall use the Jacobian matrix J(E0) in establishing the local stability of the disease-free equilib-
rium. The Jacobian matrix which is evaluated at the disease-free equilibrium, is given by
Theorem
The disease-free equilibrium (DFE) is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.
Proof
For local stability, the Jacobian matrix with respect to the model equations is given by:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ− Λ φ −β2b
µ −β2b

µ 0 0 λ −β1b
µ −β1b

µ

0 −d− Λ β2b
µ

β2b
µ 0 0 0 β1b

µ
β1b
µ

0 (1− δ)ω −e− Λ 0 0 0 0 0 0
0 δω 0 −f − Λ 0 0 0 0 0
0 0 τ2 τ5 −g − Λ 0 0 0 0
0 0 τ3 τ6 mγQ −h− Λ 0 0 0
0 0 γA γS (1−m)γQ c −n− Λ 0 0
0 0 ηA ηS 0 0 0 −a− Λ 0
0 0 0 0 0 0 0 0 −a− Λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where
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d = (φ+ µ+ ω), e = (τ3 + γA + τ2 + µ+ σ + ηA) , f = (τ6 + τ5 + µ+ σ + ηS + γS) ,

g = (µ+ σ + γQ) , h = (c+ µ+ σ), n = (λ+ µ) and a = (βdv + µP )

The characteristics equation is

(µ+ Λ) [(φ+ µ+ ω + Λ) [(τ3 + γA + τ2 + µ+ σ + ηA + Λ) [(τ6 + τ5 + µ+ σ + ηS + γS + Λ)

[
(µ+ σ + γQ + Λ)

[
(c+ µ+ σ + Λ)

[
− (λ+ µ+ Λ) (βdv + µP + Λ)2

]]]]]
+

β2b

µ
[(1− δ)ω [(τ6 + τ5 + µ+ σ + ηS + γS + Λ) [(µ+ σ + γQ + Λ) [(c+ µ+ σ + Λ)

[
(λ+ µ+ Λ) (βdv + µP + Λ)2

]]]]]
− β2b

µ
[(τ3 + γA + τ2 + µ+ σ + ηA + Λ) [δω

[(µ+ σ + γQ + Λ) [(c+ µ+ σ + Λ) − (λ+ µ+ Λ) (βdv + µP + Λ)2
]]]]]]

= 0

Where:
Λ1 = −µ, Λ2 = −µ− σ − γQ, Λ3 = −c− µ− σ, Λ4 = −λ− µ

The quadratic Λ2+(βdv)
2+µP

2+2βdvµP +2µPβdv+2Λβdv has all terms positive and thus it’s roots
must all be negative. Hence, Λ5 and Λ6 < 0

Λ7 = −τ3 − γA − τ2 − µ− σ − ηA

Λ8 = −τ6 − τ5 − µ− σ − ηS − γS

From (φ + µ + ω + Λ) (τ3 + γA + τ2 + µ+ σ + ηA + Λ) (τ6 + τ5 + µ+ σ + ηS + γS + Λ) = 0, when
expanded and solved it satisfies the Routh-Hurwitz criterion governing the polynomials of order 3.
Hence from the above the disease-free equilibrium is locally asymptotically stable. This completes
the proof

3.4. Stability of the Endemic Equilibrium Point

Corollary 1: (Corollary of Gershgorin Circle Theorem)
Let A be an n × n matrix with real entries. If the diagonal elements aii of A satisfy
aii < −ri
where

ri =

n∑
j=1,j ̸=i

|aij |

for i = 1, . . . , n, then the eigenvalues of A are negative or have negative real parts.
Theorem
The endemic equilibrium is locally asymptotically stable if R0 > 1.
Proof
The Jacobian matrix with respect to the system at the endemic equilibrium is given by:
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−B −K − µ φ −W −W 0 0 λ −X U
B +K d W W 0 0 0 X −U

0 (1− δ)ω e 0 0 0 0 0 0
0 δω 0 f 0 0 0 0 0
0 0 τ2 τ5 g 0 0 0 0
0 0 τ3 τ6 mγQ h 0 0 0
0 0 γA γS (1−m)γQ c n 0 0
Y Y ηA − C + Y ηS − C + Y −α1C + Y −α1C + Y −α2C + Y U1 0
−Y −Y C − Y C − Y 0 0 0 H

Nh
−βdv − µP


in the above,

H =Ih + σ1Th + σ2Rh, B =
β1
(
IP e + Lpe

)
(1 + α1IP e)

, J =
β1
(
IP e + Lpe

)
(1 + α1IP e)

2 ,K =
β2 (IAe + ISe)

(1 + α2IP e)
,

M =
β2 (IAe + ISe)

(1 + α2IP e)
2 , W =

β2Se

1 + α2IP e
, Nh = Se + Ee + IAe + ISe +Qe + Ve +Re,

X =
β1Se

1 + α1IP e
, Y =

[IAe + ISe + σ1 (Qe + Ve) + σ2Re]Lpe

(Se + Ee + IAe + ISe +Qe + Ve +Re)
2 , d = −φ− µ− ω, h = −c− µ− σ,

C =
Lpe

(Se + Ee + IAe + ISe +Qe + Ve +Re)
, e = −τ3 − γA − τ2 − − σ − ηA, n = −λ− µ,

f =− τ6 − τ5 − − σ − ηS − γS , g = −− σ − γQ , U1 =
H

Nh
− βdv − µP , U = −X + JS +MS

The corollary indicates that if the diagonal elements are smaller than the sum of the absolute
values of the off-diagonal elements in the same row, then the eigenvalues will have negative real
parts.

−B −K − µ <− (φ+ 2W + λ+ 2X + JS +MSe)

d <− (B +K + 2W + 2X + JS +MSe)

e <− ((1 + δ)ω)

f <− (δω)

g <− (τ2 + τ5)

h <− (τ3 + τ6 +mγQ)

n <− (γA + γS + (1 +m)γQ + c)

H

Nh
− βdv − µP <− (4Y + ηA + 2C + ηS)

−βdv − µP <− (4Y + 2C +
H

Nh
)

From the above, the diagonal elements are smaller than the sum of the absolute values of the
off-diagonal elements in the same row, hence the eigenvalues will have negative real parts which
indicates that the endemic equilibrium is stable. The implication of the above is that, it indicates a
level of resilience in the system, where it can withstand small disturbances and maintain a relatively
stable disease prevalence over time.

3.5. Sensitivity Analysis of Parameters on Basic Reproduction Number

In this section, we analyze the sensitivity of the parameters of the basic reproduction number (R0).
We employ the approach used by [16] to compute the sensitivity of the parameters of R0. The sensi-
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tivity of a parameter, say µ, of R0 is defined as

ξR0
µ =

∂R0

∂µ
× µ

R0
. (3.13)

The sensitivity indices of the parameters are presented as follows:

Table 3.2: Sensitivity Analysis on Basic Reproduction R0

Parameter Sensitivity
Evaluation at
base values

ξR0
b 1 1.0000 > 0
ξR0
β2

−δ a1+δ a2+ a1
a2

1.0000 > 0
ξR0
ω

a3−ω
a3

0.7371 > 0
ξR0
τ6

a2δτ6(ϕ++ω)
a1( a1(δ−1)− a2δ)a3

-0.0024 < 0

ξR0
δ

( a1− a2)δ
a1(δ−1)− a2δ

-0.0037 < 0
ξR0
τ5 − δτ5

a1
-0.0048 < 0

ξR0
σ − ((δ−1)a21−δ a22)σ

( a1(δ−1)− a2δ)a1 a2
-0.0050 < 0

ξR0
γS

a2δγS
( a1(δ−1)− a2δ)a1

-0.0060 < 0
ξR0
ηS

a2δηS
( a1(δ−1)− a2δ)a1

-0.0121 < 0

ξR0
τ3 − τ3(δ−1)a1

a2( a1(δ−1)− a2δ)
-0.0536 < 0

ξR0
τ2 − τ2(δ−1)a1

a2( a1(δ−1)− a2δ)
-0.1073 < 0

ξR0
ηA

− a1(δ−1)ηA
( a1(δ−1)− a2δ)a2

-0.1341 < 0

ξR0
γA

− a1(δ−1)γA
( a1(δ−1)− a2δ)a2

-0.1915 < 0
ξR0
ϕ − ϕ

ϕ++ω -0.2336 < 0

ξR0
µ

−(δ−1)((+ a3)a2+ a3) a21 +δ a22 (+ a3)a1 +δ a22 a3
a3 a1 a2( a1(δ−1)− a2δ)

-1.9866 < 0

a1 =τ6 + τ5 + µ+ σ + ηS + γS , (3.14)
a2 =τ3 + γA + τ2 + µ+ σ + ηA, (3.15)
a3 =ϕ+ µ+ ω. (3.16)

The analysis revealed that the positively sensitive parameters of the basic reproduction num-
ber, R0, are the recruitment rate (b) into the susceptible class, the probability (β2) that each contact
is effective enough to cause infection, and the progression rate (ω) of exposed individuals to either
asymptomatic or symptomatic class. Thus, reducing the number of susceptible individuals, reducing
or eliminating contact with contaminated environment, effectively restricting infected humans from
adding to the pathogen population, and ensuring that exposed individuals remain protected can
greatly lower the value of the basic reproduction number (R0) and thereby increasing the stability
of the disease-free equilibrium. on the other hand, increasing the values of the positively sensitive
parameters has the effect of increasing the value of the basic reproduction number (R0), which is not
a desired condition. Amongst the negatively sensitive parameters are the death rate (µ), the rate of
recoveries γS,A, progression rate to quarantine class due to treatment and compliance to hygienic reg-
ulations τ2,3,5,6, the disease induced death rate (δ). Increasing the values of these negatively sensitive
parameters, reduces the value of the basic reproduction number (R0), which is the desired condition.
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In general, sensitivity parameters are assessed as positive or negative based on our model’s con-
text and for the specific parameters under consideration. A positive sensitivity parameter indicates a
direct correlation between an input parameter and the model output, meaning that an increase in the
parameter value results in a corresponding increase in the model output, and vice versa, implying
a positive influence on the system. Conversely, a negative sensitivity parameter suggests an inverse
relationship between the input parameter and the model output, where an increase in the parameter
value leads to a decrease in the model output and vice versa, indicating a negative impact on the
system. These understanding of the sign and magnitude of sensitivity parameters is crucial for com-
prehending how individual factors affect model behavior and guiding decision-making processes.

4. Numerical Simulations

4.1. Method of Solution

The ’dsolve’ command in computer algebra systems, such as those like Maple or Mathematica, pro-
vides a method for finding numerical solutions to ordinary differential equations (ODEs) or systems
of ODEs. When used with the ’numeric’ or ’type=numeric’ option, it computes a numerical solution.
This command is versatile and can handle both initial value problems (IVPs) and boundary value
problems (BVPs), as well as initial differential algebraic problems. The maple software was used in
this case and a function within the ’plots’ package, ’odeplot’ was used to plot the result while another
function ’plots[display]’ also in the ’plots’ package was used to display the graph in two dimensional
plane. The result of the above procedure is discussed below

4.2. Discussion of Result

Figure 1 and 2 shows the effect of the disease-induced death rate on the quarantined and vaccinated
population. When the disease-induced death rate is high, it will lead to a decrease in the population
size. On the other hand, if the disease-induced death rate is low, it will lead to an increase in the
population size. A high disease-induced death rate can actually have a counterintuitive effect on
transmission rate because when people are dying from the disease, there are fewer people available
to become infected and spread the disease. Also, if the rate of recovery is high, then even if the death
rate is high, the population may still be able to rebound. From Figure 3 and 10, we can see the effect
of the progression rate from the asymptomatic infected class to both the quarantined and vaccinated
classes respectively. If the rate of progression from the asymptomatic class to the symptomatic class
is high then there’s going to be an increase in the quarantined or vaccinated population. From Figure
4 and 5, we can see the effect of the progression rate from the symptomatic infected class to both
the quarantined and vaccinated classes respectively. If the progression rate from the symptomatic
class is high, a large number of people will need to be quarantined or treated which could cause the
quarantined and vaccinated populations to increase. There is also a case whereby the high progres-
sion rate would cause a large number of people to become symptomatic but the high recovery rate
would cause many of them to recover quickly. This could mean that the total number of people in
the quarantined and vaccinated populations remains relatively constant.

From Figure 6, the effect of rate of recovery of the quarantined population on the quarantined
class is displayed. For the quarantined population, a high rate of recovery means that more people
are being released from quarantine which frees up resources for other public health issues. From
Figure 7, we can see the effect of vaccine effectiveness on the vaccinated population. Vaccine effec-
tiveness refers to how well the vaccine protects people from the disease. A high vaccine effectiveness
means that more people in the population are protected from the disease and therefore, the number
of people who need to be vaccinated is lower. On the other hand, a low vaccine effectiveness means
that more people need to be vaccinated to achieve the same level of protection. From Figure 8 and 9
we can see the effect of the natural death rate on both the quarantined and vaccinated population. For
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the quarantined class, a high natural death rate means that people are more likely to die from causes
other than the disease being studied This can free up resources that would otherwise be used to treat
the disease. For the vaccinated class, a high natural death rate means that there is less pressure to
vaccinate people since they are likely to die from other causes. It is important to note that the natural
death rate affects the overall life expectancy of the population. If the natural death rate is high, it
means that people are likely to die at a younger age, which can affect the number of people who are
eligible for vaccination. It can also affect the number of people who are likely to be hospitalized or
require long-term care.

Conclusion

In this paper, we modified a SEIR model to include transmission dynamics, severity of the virus
on human population, quarantine, vaccination and disease induced death rate. We determined the
existence and local stability of the disease-free equilibrium along with the existence of the endemic
equilibrium.

Figure 4.2: Effect of disease-induced death rate on quarantined class

Figure 4.3: Effect of disease-induced death rate on vaccinated class
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Figure 4.4: Effect of progression rate from asymptomatic infected class to quarantined class on quar-
antined humans

Figure 4.5: Effect of progression rate from symptomatic infected class to quarantined class on quar-
antined class

Figure 4.6: Effect of progression rate from symptomatic infected class to vaccinated class on vacci-
nated class

Figure 4.7: Effect of rate of recovery of the quarantined population on quarantined class
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Figure 4.8: Effect of vaccine effectiveness on vaccinated class

Figure 4.9: Effect of the natural death rate on the quarantined humans

Figure 4.10: Effect of the natural death rate on the vaccinated humans

Figure 4.11: Effect of the progression rate from asymptomatic infected class to vaccination class on
the vaccinated humans
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Then, the basic reproduction number was computed using the next generation matrix. From the
model we can see how all the various factors considered can help reduce its tenacity along with the
various preventive and treatment procedures being put together to help curtail the spread of the
disease.

We explored comprehensively, the sensitivity analysis on Basic Reproduction Number (BRN)–
R0. From the results, conditions that can mitigate and even eradicate the disease were uncovered.
Vaccination helps to protect people from getting sick which can reduce the strain on the health care
systems and prevent a large number of deaths. Quarantine on the other hand, helps to stop the
spread of the disease which can prevent an epidemic or even a pandemic. It is recommended that
other researchers who intend to research on this field can consider other aspects of the population
including the economy, the government, the culture and the health care system and how they interact
with each other.

From the discussion so far, the following are deduced:

1. Incorporating preventive measures and treatment into models helps understand their impact
on disease transmission dynamics, aiding in predicting the pandemic’s trajectory and assessing
control strategies’ effectiveness.

2. The study informs policymakers about the effectiveness of preventive measures like mask-
wearing and vaccination, aiding in decision-making for implementing and adjusting public
health measures.

3. Understanding transmission dynamics helps healthcare systems allocate resources efficiently,
prepare for surges, and plan the distribution of vaccines and treatments.

4. The study evaluates interventions’ impact on key parameters, such as R0 and ξR0 , crucial for
assessing their effectiveness in controlling virus spread across different populations.

5. Insights from this study inform clear public health messaging to promote adherence to preven-
tive measures and vaccination, building trust and compliance.
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