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Abstract:
The research investigates the transmission dynamics of diphtheria and the role of vaccination as
a prominent control measure. A novel Susceptible-Vaccinated-Exposed-Infectious-Hospitalized-
Recovered (SVEIHR) model is developed to analyze the spread of the disease among age-structured
populations. The study focuses on the existence and uniqueness of the disease-free equilibrium and
conducts stability analyses of both local and global equilibria. Sensitivity analysis of targeted param-
eters is performed to evaluate their impact on disease transmission dynamics. Numerical simulations
utilizing the Laplace Adomian Decomposition Method illustrate the effects of these parameters on
the compartments of the model, with results presented graphically. Through this comprehensive
analysis, the study aims to provide insights into the effectiveness of vaccination strategies in control-
ling diphtheria and inform evidence-based public health interventions.

Keywords: Age-structured modeling, Basic Reproduction Number, Stability Analysis, Treatment
Rate, Laplace Adomian Decomposition Method

1. Introduction

Diphtheria, caused by the bacterium Corynebacterium diphtheriae, continues to be a significant pub-
lic health issue, especially in regions with low vaccination coverage [1]. Despite the availability of
an effective vaccine, outbreaks still occur, underscoring the need for a deeper understanding of the
transmission dynamics and the role of vaccination in controlling the disease [2–6]. Mathematical
modeling has long been employed to study infectious diseases, providing insights that are crucial for
developing effective control strategies. Traditional models, such as the SEIR (Susceptible-Exposed-
Infectious-Recovered) framework, have been instrumental in understanding various aspects of dis-
ease spread. However, these models often do not account for age-specific differences in contact
patterns and immune responses, which are particularly important in the context of diphtheria [7].
Previous research has highlighted the importance of age structure in infectious disease modeling
[8–10]. Age-structured models, which incorporate age-specific contact rates and disease progression
probabilities, offer a more realistic representation of disease dynamics [11]. These models have been
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applied to various infectious diseases, demonstrating their value in understanding the transmission
and impact of interventions across different age groups [12–14]. Diphtheria, several studies have ex-
plored the impact of vaccination and age-specific contact patterns. However, there remains a gap in
integrating these factors comprehensively into a single model that can inform both the understand-
ing of disease dynamics and the development of targeted intervention strategies [12, 13, 15–20]. This
research aims to bridge this gap by introducing an age-structured SVEIHR (Susceptible-Vaccinated-
Exposed-Infectious-Hospitalized-Recovered) model for diphtheria transmission analysis [16]. The
SVEIHR model extends the traditional SEIR framework by incorporating vaccinated and hospital-
ized compartments [17–20]. The vaccinated compartment represents individuals who have received
the diphtheria vaccine, accounting for partial immunity and reduced infectiousness. The hospitalized
compartment includes individuals with severe symptoms requiring medical intervention [21]. By in-
corporating these compartments, the model captures the critical role of vaccination and hospitaliza-
tion in diphtheria transmission dynamics. The model considers two distinct age groups, recognizing
the differences in contact patterns, disease progression, and vaccination responses between children
and adults. This distinction allows for a more nuanced analysis of how vaccination strategies can be
tailored to different age groups to maximize their effectiveness in [22]. Through parameter calibra-
tion using epidemiological data, the model accurately reflects age-specific incidence rates, vaccina-
tion coverage, and contact matrices. Sensitivity analysis identifies the most influential parameters,
providing insights into key factors driving diphtheria transmission by [18]. The model’s predictions
are validated against historical outbreak data, ensuring its reliability and applicability. This research
emphasizes the critical role of vaccination as a control tool in managing diphtheria. The findings
highlight the need for policymakers and health practitioners to prioritize vaccination coverage and
promote public awareness about the benefits of vaccination in [23–26]. By adhering to proper usage
and ensuring widespread enlightenment, vaccination can significantly reduce the burden of diph-
theria and prevent future outbreaks [27]. This research contributes to infectious disease modeling by
presenting an age-structured SVEIHR model that integrates vaccination and age-specific factors. It
provides valuable insights for policymakers and health practitioners, guiding effective interventions
to combat diphtheria and enhance public health outcomes.

2. Mathematical Formulation

A total population N(t) is considered which is divided into sub-populations of S1, S2 of suscepti-
ble children and adult population, E(t) exposed , I(t) infected, H(t) hospitalized and R(t) recovered
population. The level of individuals migrating into the population at Λ, effective contact rate of an
individual β and the fraction of the children recruited into the population at π, the level of the spread
induced rate at d. The conversion rate in diphtheria disease between the two population of children
and adult being exposed at φ1, φ2, . The modification of the disease is at a rate λ, and regular treat-
ment of diphtheria disease is at rate of τ . An exposed individual are subjected to recover at a rate of
η1, η2 and individuals that are hospitalized having been infected is γ while that of infected are said to
recover at a rate of δ. Moreso, set of recovered individual form back into the population occurs at at
rate of φ1, φ2. Respective individuals across the sub-population are subjected to death naturally by
µ. Pictorial illustration of this can be displayed from the figure below

2.1. Existing Model

A proposed compartmental-based model for analyzing the dynamics of the spread of diphtheria
transmission disease. The governing model is given by the system of non-linear ordinary differential
equations below.
This mathematical model analyses the spread of diphtheria disease, particularly considering the nat-
ural immunity rate among exposed individuals within the population; it is often cited as a study
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utilizing an (SEIQR) model to explore diphtheria dynamics with a focus on natural immunity in the
exposed group.

ds

dt
= (1− p)µN − ηsi

N
− δs+ ϕe

de

dt
=

ηsi

N
− (β + ϕ+ δ)e

di

dt
= βe− (γ + δ + θ)i

dq

dt
= γi− (ε+ δ)q

dr

dt
= pµN + εq − δr

(2.1)

N is the total population as s(0) = so, e(0) = io, i(0) = io, q(0) = qo, r(0) = ro ≥ 0

2.1.1. The Modified Model

Figure 2.1: The Schematic flow of the SVEIHR Model.

This was extended by that fraction of the children population are newborn who are administered
the diphtheria vaccine at a rate p and automatically gain lifelong immunity and moves to recovered
class. The model equation is as follows.

dS1

dt
= Λπ(1− p)− β1S1I − p1S1 + w1V + φE −ϖSs1 − µS1

dS2

dt
= Λ(1− π)− (1− λ)βS2I − p2S2 + w2V + φE + ϱS1 − µS2

dV

dt
= p1S1 + p2S2 − (w1 + w2)V − µV

dE

dt
=

(
β1S1 + (1− λ)β2S2

)
I − (η1 + η2 + φ1 + φ2 + µ)E

dI

dt
= (η1 + η2)E − (γ + δ + µ)I

dH

dt
= γI −

(
ε1 + ε2 + µ+ τ

)
H

dR

dt
= pπΛ +

(
ε1 + ε2 + τ

)
H − µR

(2.2)
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By initial condition that 0 ≤ T ≤ 1. When T = 0, vulnerable individuals are not immunized or
immunization does not affect the vulnerable compartment.

2.2. Tables and Figures

Table numbering follows the subsection in which the table is discussed. For example, in results, the
table number starts with 3.1, 3.2, and so on. The same applies to figures. Table captions are placed
above the table while figure captions are placed below the figure.

Table 2.1: Description of the parameters and values

Parameter Description Values Units Refs.

N Susceptible population 7000
S1 Susceptible population of children 4500
S2 Susceptible population of Adult 4500
E Exposed population 2050
I Infected population 142
H Hospitalized population 142
R Recovered population 306 perday−1 [12]
Λ Recruitment rate into the susceptible children population 0.012 perday−1 [5, 8]
τ Regular treatment rate of hospitalized 0.31 perday−1 [19]
d Diphtheria induced death 0.011 perday−1 [20-23]
µ natural death from the population 0.01 perday−1 [18]
π Children fraction of recruited 0.2102 perday−1 [1, 7, 15]
β Effective contact rate 0.1 perday−1 [13]
η1, η2 rate of exposed to infected 0.2317 perday−1 [2]
γ Rate of hospitalization 0.31 perday−1 [7,18]
ε1, ε2 Recovery rate 0.815 perday−1 [17]
δ Recovery rate from infected 0.3 perday−1 [10,16]
λ Modification parameter 1.7601 perday−1 [12, 19]
φ1, φ2 Conversion rate exposed children and adults 1.091 perday−1 [3]

3. Model Analysis

3.1. Existence and Uniqueness of the Model

Examining the population-related segment of the system of equations, we have
N(t) = S1(t) + S2(t) + V (t) + E(t) + I(t) +H(t) +R(t)
The derivatives obtained as,

dN(t)

dt
=

d

dt

(
S1(t), S2(t), V (t), E(t), I(t), H(t), R(t)

)
(3.3)

dN(t)

dt
=

dS1

dt
+

dS2

dt
+

dV

dt
+

dE

dt
+

dI

dt
+

dH

dt
+

dR

dt
(3.4)
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dN(t)

dt
=

{
Λπ(1− p)− β1S1I − p1S1 + w1V + φE −ϖSs1 − µS1

+ Λ(1− π)− (1− λ)βS2I − p2S2 + w2V + φE + ϱS1 − µS2 + p1S1 + p2S2 − (w1 + w2)V − µV

+

(
β1S1 + (1− λ)β2S2

)
I − (η1 + eta2 + φ1 + φ2 + µ)E + (η1 + eta2)E − (γ + δ + µ)I + γI

−

(
ε1ε2 + µ+ τ

)
H

+ pπΛ +

(
(ε1ε2) + τ

)
H − µR

}

dN(t)
dt ≤ Λ− µN − δI(t) where no outbreak of diphtheria is observed, δ = 0

dN
dt + µN ≤ Λ

N(t)eµt = Λeµt

µ + C, as where c is a constant of integration
N(t) = Λ

µ + Ce−µt

By the initial condition at t = 0
C = N(t)− Λ

µ , C = N(0)− Λ
µ

As time progresses, N(t) is such that;

lim
t→∞

N(t) ≤ lim
t→∞

[
Λ

µ
+

(
N(0)− Λ

µ

)
e−µt

]
=

Λ

µ
(3.5)

If N(0) ≤ Λ
µ , then N(t) ≤ Λ

µ . Thus, ℜ5
+ is a positive invariant set under the flow described by (3.2)

so that no solution path leaves through any boundary of ℜ5
+. Hence, it is sufficient to consider

the dynamics of the model in the domain ℜ5
+. In this region, the model can be considered to be

mathematically and epidemically well-posed representing a physical problem.
This shows that the total population N(t), i.e., the sub-population
S1(t), S2(t), V (t), E(t)I(t), H(t), R(t) of the model are bounded and is a unique solution. Hence, it
represents a physical problem.

3.2. Positivity and Boundedness of the Model Solution

Theorem 1

Let x, y be distinct points of a normed linear space (X, ∥ · · · ∥) over ℜ. Then the map
f : [0, 1] ⊆ ℜ → (X, ∥ · ∥), such that f(λ) = λx+ (1− λ)y is continuous on [0, 1]

Proof :

Let λ0 ∈ [0, 1]. then f(λ0) = λ0x+ (1− λ0)y for any λ ∈ [0, 1],

∥ f(λ)− f(λ0) ∥ = ∥ (λ− λ0)x+ (λ0 − λ)y ∥
≤ | λ− λ0 | (∥ x ∥ + ∥ y ∥).

If ε > 0 is given, let δ = ε
∥x∥+∥y∥ . If | λ − λ0 |< δ, then the ∥ f(λ) − f(λ0) ∥< ε, . Therefore, f is

continuous at λ0. Since λ0 is an arbitrary point in [0, 1], then f is continuous on [0, 1]. Let X be a linear
space over ℜ. If x, y are distinct points of X, the set λx+ (1− λ)y, 0 ≤ λ ≤ 1.
Let;
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f1 = Λπ(1− p)− β1S1I − p1S1 + w1V + φE −ϖSs1 − µS1 (i)

f2 = Λ(1− π)− (1− λ)βS2I − p2S2 + w2V + φE + ϱS1 − µS2 (ii)

f3 = p1S1 + p2S2 − (w1 + w2)V − µV (iii)

f4 =

(
β1S1 + (1− λ)β2S2

)
I − (η1 + eta2 + φ1 + φ2 + µ)E (iv)

f5 = (η1 + eta2)E − (γ + δ + µ)I (v)

f6 = γI −

(
ε1 + ε2 + µ+ τ

)
H (vi)

f7 = pπΛ +

(
ε1 + ε2 + τ

)
H − µR (vii)

Then,

| df1dS1
| = |β + p+ϖ + µ| <∞, | df1dS2

| = |0| <∞, |df1dV | = |w1| <∞, |df1dE | = |φ1| <∞,

|df1dI | = |β| <∞, | df1dH | = |0| <∞, |df1dR | = |0| <∞
| df2dS1
| = |φ1| <∞, | df2dS2

| = |(1− λ) + β + µ+ p+ 2| <∞, |df2dV | = |w2| <∞, |df2dE | = |φ2| <∞,

|df2dI | = |(1− λ)β| <∞, | df2dH | = |0| <∞, |df2dR | = |0| <∞
| df3dS1
| = |p1| <∞, | df3dS2

| = |p2| <∞, |df3dV | = |w1 + w2 + µ| <∞, |df3dE | = |0| <∞,

|df3dI | = |0| <∞, | df3dH | = |0| <∞, |df3dR | = |0| <∞


(3.6)

The bounded solution of the model exist in all the compartments respectively, therefore is well-posed.

3.3. Disease Free Equilibrium

From the above system of equations, at equilibrium when no outbreak of diphtheria is observed in
the total population, I(t), H(t), E(t) = 0

dS1

dt
=

dS2

dt
=

dV

dt
=

dE

dt
=

dI

dt
=

dH

dt
=

dR

dt
= 0

0 = Λπ(1− p)− β1S1I − p1S1 + w1V + φE −ϖSs1 − µS1

0 = Λ(1− π)− (1− λ)βS2I − p2S2 + w2V + φE + ϱS1 − µS2

0 = p1S1 + p2S2 − (w1 + w2)V − µV

0 =

(
β1S1 + (1− λ)β2S2

)
I − (η1 + eta2 + φ1 + φ2 + µ)E

0 = (η1 + eta2)E − (γ + δ + µ)I

0 = γI −

(
ε1 + ε2 + µ+ τ

)
H

0 = pπΛ +

(
ε1 + ε2 + τ

)
H − µR

Lastly, it is obtained from (iv)
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0 = pπΛ +

(
ε1 + ε2 + τ

)
H − µR

Hence, the disease-free equilibrium
E1= (S1o, S2o, Vo, Eo, Io, Ho, Ro) where So ̸= 0 as I = 0

E1 =

{
S1o =

Λπ(1−p)+w1w1

(φ1+µ) , S2o =
Λ(1−π)+w1φ2

(γ+δ+µ) , V = p1S1+p2S2

(φ1+φ2+µ) , E = 0, I = 0, H = 0, R = pΛπ
µ

}

3.4. Endemic Equilibrium Point

Let Ee = (S∗
1 , S

∗
2 , V

∗, E∗, I∗, H∗, R∗) as Endemic equilibrium where I ̸= 0. Consider the system of
equation (3.2) at equilibrium point as:
0 = Λπ(1− p)− β1S1I − p1S1 + w1V + φE −ϖSs1 − µS1

0 = Λ(1− π)− (1− λ)βS2I − p2S2 + w2V + φE + ϱS1 − µS2

0 = p1S1 + p2S2 − (w1 + w2)V − µV

0 =

(
β1S1 + (1− λ)β2S2

)
I − (η1 + eta2 + φ1 + φ2 + µ)E

0 = (η1 + eta2)E − (γ + δ + µ)I

0 = γI −

(
ε1 + ε2 + µ+ τ

)
H

0 = pπΛ +

(
ε1 + ε2 + τ

)
H − µR

S∗
1 =

Λπ(1− p) + [w1 + β2(η1 + η2)
√

β1 + (1− λ)β2]

βφ1 + φ1 + (τ + η2) + µ
(3.7)

from (ii),
0 = Λ(1− π)− (1− λ)βS2I − p2S2 + w2V + φE + ϱS1 − µS2

S∗
2 =

Λβ(1− π)
√

β1 + (1− λ)β2
µ+ φ1 + φ2 + [η1 + φ2 + ε2 + ε1]γ2(1− λ)(ε1 + ε2)

(3.8)

From (iii),
0 = p1S1 + p2S2 − (w1 + w2)V − µV

V ∗ =
p1S

∗
1 + p1S

∗
1

(w1 + w2 + µ)
(3.9)

From (iv),

0 =

(
β1S1 + (1− λ)β2S2

)
I − (η1 + eta2 + φ1 + φ2 + µ)E

E∗ =
βS∗

1 + (1− λ)β2S
∗
2

η1 + η2 + φ1 + φ2 + µ
(3.10)

It is obtained from (v) that 0 = (η1 + η2)E − (γ + δ + µ)I

I∗ =
η1 + η2E

∗

γ + δ + µ
(3.11)
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Also obtained that 0 = γI −

(
ε1 + ε2 + µ+ τ

)
H

H∗ =
γ(w1 + w[2] + β(1− λ))I∗

ε1 + ε2 + µ+ τ
(3.12)

Lastly it is obtained from the model equations that 0 = pπΛ +

(
(ε1 + ε2) + τ

)
H − µR

R∗ =
λpπ(ε1 + ε2) + τ

µ(1− π) + βτγ(1− λ) + (η1 + η2)
(3.13)

3.5. Basic Reproduction Number (Ro)

Lemma

The basic reproduction number denoted as R0 . It is necessary to quantify the probability of new
diphtheria infections resulting from a single carrier or sick person in a population without previous
illnesses. We use the next-generation approach to create the system described in System of equa-
tion, focusing on the infectious classes E, I, and B. The F and V matrices, which represent the rates
of new infections and transitions into and out of the infected compartment, respectively, are com-
puted as part of this methodology. These matrices are obtained using a complex derivation from
the equations. There are two disease states but only one way to create a new infection. Hence,
exposed, infected enable the diphtheria spread in compartments of the model which are connected
from system of equation (2.2). This denotes the number of secondary infections caused as a result
of infected individuals in a population. Where Ro = F × V −1.To Obtain Ro from the the spread
of diphtheria disease, it is deduced using next generation matrix where at equilibrium, non-infected
sub-populations are disease-free. The transition and transmission matrices V and F are obtained from
the partial derivatives of f and v to (E, I, H) evaluated at the disease-free equilibrium E1

Fi =

(
∂fi(xi)

∂xj

)
Vi =

(
∂νi(xi)

∂xj

)
i, j = 1, 2 . . . 7

F =

(β1S1 + (1− λ)β2S2)
0
0

 V =

 (η1 + η2 + φ1 + φ2 + µ)E(t)
−(η1 + η2)E(t) + (γ + δ + µ)I(t)
(γ)I(t) + [ε1 + ε2 + µ+ τ ]H(t)



F =

0 (β1S1 + (1− λ)β2S2 0
0 0 0
0 0 0

 V =

(η1 + η2 + φ1 + φ2 + µ) 0 0
−(η1 + η2) (γ + δ + µ) 0

(γ) γ (ε1 + ε2 + µ+ τ)



F =

0 β1Λπ(1−p)+w1ε1+Λ(1−π)+w1φ2

(φ1+µ)(γ+δ+µ) 0

0 0 0
0 0 0


The determinant and inverse of V is thus obtained from the adjunct of V thus
|V | = (η1 + η2 + φ1 + φ2 + µ)(γ + δ + µ)(ε1 + ε2 + µ+ τ)
As it is obtained that

Vc =

 K1 −(η1 + η2 + µ+ τ) −γ(η1 + η2)
0 K2 0
0 0 K3


20
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where K1 = (ε1 + ε2 + µ+ τ)(γ + δ + µ),K2 = (η1 + η2 + φ1 + φ2 + µ)(ε1 + ε2 + µ+ τ),
K3 = (η1 + η2 + φ1 + φ2 + µ)(γ + δ + µ)

V −1 =


1

(η1+η2+φ1+φ2+µ) −
(η1+η2)

(η1+η2+φ1+φ2+µ)(γ+δ+µ) −
(η1+η2)

(η1+η2+φ1+φ2+µ)(γ+δ+µ)(η1+η2+µ+τ)

0 1
(γ+δ+µ) 0

0 0 1
(η1+η2+µ+τ)


Given that, Ro = F × V −1 denoting the product of the matrices obtained

Ro =

0 β1Λπ(1−p)+w1ε1+Λ(1−π)+w1φ2

(φ1+µ)(γ+δ+µ) 0

0 0 0
0 0 0


A B C
0 1

(γ+δ+µ) 0

0 0 1
(η1+η2+µ+τ)


Consider A = 1

(η1+η2+φ1+φ2+µ) , B = − (η1+η2)
(η1+η2+φ1+φ2+µ)(γ+δ+µ) ,

C = − (η1+η2)
(η1+η2+φ1+φ2+µ)(γ+δ+µ)(η1+η2+µ+τ)

Ro =
β1Λπ(1− p) + w1ε1 + Λ(1− π) + w1φ2(η1 + η2)

(φ1 + µ)(γ + δ + µ)
(3.14)

3.6. Local Stability of Disease Free Equilibrium

Theorem 2

The disease-free equilibrium of the model for transmission of diphtheria is locally asymptotically
stable if Ro < 1 and vice versa.

Proof:

The local stability of disease-free equilibrium at So =
βΛ

(µ+r+ω)

The Jacobian matrix of the system (3.2) as obtained that |JE1 − λiI| = 0i = 1, 2 . . . 5
Thus, the disease-free equilibrium is locally asymptotically stable if the eigenvalues λi, i = 1, . . . , 7
of the matrix formed satisfies the condition.
The stability criterion of disease-free equilibrium, the general Jacobian matrix has been resolved for
as;

J(E1) =



L 0 w1 φ1 −β1S1 0 0
w1 M w2 φ2 N 0 0
p1 p2 N 0 0 0 0
β1I (1− λ)β2I 0 P [β1S1 + (1− λ)β2S2] 0 0
0 0 0 (η1 + η2) Q 0 0
0 0 0 0 γ R 0
0 0 0 0 0 (η1 + η2 + τ) −µ


(3.15)

Then at disease free equilibrium,

J(E1) =



L 0 w1 φ1 −β1K1 0 0
w1 M w2 φ2 −(1− λ)β2K2 0 0
p1 p2 N 0 0 0 0
0 0 0 P [β1K1 + (1− λ)β2K2] 0 0
0 0 0 (η1 + η2) Q 0 0
0 0 0 0 γ R 0
0 0 0 0 0 (η1 + η2 + τ) −µ


(3.16)

21



Kolawole et al.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

L 0 w1 φ1 −β1K1 0 0
w1 M w2 φ2 −(1− λ)β2K2 0 0
p1 p2 N 0 0 0 0
0 0 0 P [β1K1 + (1− λ)β2K2] 0 0
0 0 0 (η1 + η2) Q 0 0
0 0 0 0 γ R 0
0 0 0 0 0 (η1 + η2 + τ) −µ− λg

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.17)

As, L = −(p1 + w1 + µ)− λa, M = −[p2 + µ]− λb

N = −(w1 + w2 + µ)− λc, P = −(η1 + η2 + φ1 + φ2 + µ)− λd

Q = −(γ + δµ)− λe, R = −(η1 + η2 + µ+ τ)− λf

As obtained from the previously examined determinant of respective eigenvalues, λd = −(η1 + η2 +
φ1 + φ2 + µ). Similarly, the last of the eigenvalue is obtained as;∣∣∣∣∣∣∣∣∣∣

−(w1 + w2 + µ)− λc 0 0 0 0
−(η1 + η2 + φ1 + φ2 + µ)− λd [β1K1 + (1− λ)β2K2] 0 0

(η1 + η2) −(ε+ δ + µ+ γ)− λe 0 0
0 γ (η1 + η2 + µ+ τ)− λf 0
0 0 (η1 + η2) −µ− λg

∣∣∣∣∣∣∣∣∣∣
= 0,

(3.18)

[−(w1 + w2 + µ)− λc]

∣∣∣∣∣∣∣∣
X [β1K1 + (1− λ)β2K2] 0 0

(η1 + η2) Y 0 0
0 γ Z 0
0 0 (η1 + η2) −µ− λg

∣∣∣∣∣∣∣∣ = 0 (3.19)

As X = −(η1 + η2 + φ1 + φ2 + µ)− λd,
Y = −(ε+ δ + µ+ γ)− λe

Z = (η1 + η2 + µ+ τ)− λf

Lastly, from the Jacobian matrix earlier stated,λc = −(w1 + w2 + µ), respectively;

λa = −(p1 + w + µ) < 0
λb = −(p2µ) < 0

λc = −(w1 + w2 + µ) < 0

λd = −(η1 + η2 + φ1 + φ2 + µ) < 0

λe = −(γ + δ + µ) < 0

λf = −(ε1 + ε2 + τ + µ) < 0

λg = −µ < 0


(3.20)

Hence, they are negatively invariant in the regionℜ5
+, therefore they are locally asymptotically stable.

3.7. Local Stability of Endemic Equilibrium

Theorem 3

Suppose X = xn is a space of sequence of real number and we define

d(x, y) =

(
n∑

i=1

| xi |p
) 1

p

, p ≥ 1 (3.21)
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X with the metric is called ξpn space. If
∑∞

i=1 | x |p< ∞ or absolutely convergent and d(x, y) =(∑∞
i=1 | xi − yi |p

) 1
p

, then X with this metric is called an ξp space. It can be checked that for each n;

Proof:

0 ≤ x21 + x22 + x23 + . . .+ x2n ≤ (| x1 | + | x2 | + | x3 | + . . .+ | xn |)2

This will result to;

x21 + x22 ≤ (| x1 | + | x2 |)2

Therefore,

0 ≤ (x21 + x22 + x23 + . . .+ x2n)
1
2 ≤| x1 | + | x2 | + | x3 | + . . .+ | xn |

If
∑∞

n=1 | xn | converges, that is,
∑∞

n=1 | xn | is absolutely convergent, then

0 ≤ (x21 + x22 + x23 + . . .+ x2n)
1
2 ≤| x1 | + | x2 | + | x3 | + . . .+ | xn |=

∞∑
n=1

| xn |<∞

Therefore,

0 ≤ sn = x21 + x22 + x23 + . . .+ x2n ≤

[ ∞∑
n=1

| xn |

]2
<∞ (3.22)

The sequence xn is monotone increasing and bounded above, it therefore converges. Thus
∑∞

n=1 x
2
n

converges if
∑∞

n=1 xn converges absolutely i.e if xn ∈ ξ1, then xn ∈ ξ2 where ξ1 ≤ ξ2.
In case of ξ1 denote the set of all sequences xn of real numbers such that

∑∞
n=1 xn is convergent

absolutely i.e
∑∞

n=1 | xn |<∞, whereas ξ2 denote the set of all sequence xn of real numbers such that∑∞
n=1 x

2
n < ∞ converges. From the preceding, xn ∈ ξ1 ←→ xn ∈ ξ2 i.e ξ1 ⊆ ξ2. Further, if xn = 1

n
3
4

,

then
∑∞

n=1 | xn | diverges, and thus xn /∈ ξ1. But
∑∞

n=1 x
2
n =

∑∞
n=1

1

n
3
4

converges, implying that

xn ∈ ξ2. We conclude then that ξ2 ⊆ ξ1 and thus ξ1 ̸= ξ2. If xn, yn are sequences of real numbers,
then

n∑
i=1

(xi = yi)
2 ≤

n∑
i=1

x2i +
n∑

i=1

y2i + 2

[
n∑

i=1

x2i

] 1
2
[

n∑
i=1

y2i

] 1
2

(3.23)

Therefore if
∑∞

i=1 x
2
i < ∞ and

∑∞
i=1 y

2
i < ∞ then

∑∞
i=1(xi − yi)

2 < ∞ for all n. The monotone

increasing sequence

[∑∞
i=1(xi−yi)2

]
is then bounded above and hence converges i.e

∑∞
i=1(xi−yi)2 <

∞. Thus (xn − yn) ∈ ξ2 if xn, yn are in ξ2. The endemic equilibrium of the model outlining the
transmission of diphtheria diseases is locally asymptotically stable if Ro < 1 and unstable otherwise.
Let S1 = a + S∗

1 , S2 = b + S∗
1 , V = c + V ∗, E = d + E∗, I = e + I∗, H = f + H∗, R = f + R∗ By
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linearizing each state variable of the model formulation, it is obtained that,

da

dt
= Λπ(1− p)− β1(a+ S∗)(e+ I∗)− p1(a+ S∗) + w1(c+ V ∗) + φ(d+ E∗)− (ϖ − µ)(a+ S∗)

db

dt
= Λ(1− π)− (1− λ)β(b+ S∗)(e+ I∗)− p2(b+ S∗) + w2(c+ V ∗) + φ(d+ E∗) + ϱ(a+ S∗)− µS∗

2

dc

dt
= p1(a+ S∗) + p2(b+ S∗)− (w1 + w2)(c+ V ∗)− µ(c+ V ∗)

dd

dt
=

(
β1(a+ S∗) + (1− λ)β2(b+ S∗)

)
(e+ S∗)− (η1 + eta2 + φ1 + φ2 + µ)(d+ E∗)

de

dt
= (η1 + eta2)(d+ E∗)− (γ + δ + µ)(e+ I∗)

df

dt
= γ(e+ I∗)−

(
ε1ε2 + µ+ τ

)
(f +H∗)

dg

dt
= pπΛ +

(
(ε1ε2) + τ

)
(f +H∗)− µ(g +R∗)

Hence,

da

dt
= −β1ae− p1a+ w1c+ φd− (ϖ − µ)a+ higherorder + non− linear + . . .

db

dt
= −(1− λ)βbe− p2b+ w2c+ φd+ ϱa− µb

dc

dt
= p1a+ p2b− (w1 + w2)c− µc

dd

dt
=

(
β1a+ (1− λ)β2b

)
e− (η1 + eta2 + φ1 + φ2 + µ)d

de

dt
= (η1 + eta2)d− (γ + δ + µ)e

df

dt
= γe−

(
ε1ε2 + µ+ τ

)
f

dg

dt
=

(
(ε1ε2) + τ

)
f − µg

The Jacobian matrix of the system

J(E∗) =



A 0 w1 ε1 −β1a 0 0
ϱ B w2 ε2 (1− λ)βb 0 0
p2 p2 C 0 0 0 0

β1e (1− λ)β2e 0 −D (β1e+ (1− λ)β2e) 0 0
0 0 0 (η1 + eta2) E 0 0
0 0 0 0 γ F 0
0 0 0 0 0 (ε1ε2 + µ+ τ) G


(3.24)
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From the characteristic equation of |J(E∗)− λI| = 0

J(E∗) =



A− λ 0 w1 ε1 −β1a 0 0
ϱ B − λ w2 ε2 (1− λ)βb 0 0
p2 p2 C − λ 0 0 0 0

β1e (1− λ)β2e 0 D − λ 0 0
0 0 0 (η1 + eta2) E − λ 0 0
0 0 0 0 γ F − λ 0
0 0 0 0 0 (ε1ε2 + µ+ τ) G− λ


(3.25)

Respective eigenvalues become{
A− λ)(B − λ)(D − λ)(E − λ)(F − λ)(G− λ) = 0

}
where A =−[β1e+ p1 + (ϖ − µ)], B = −[(1− λ)βe+ p2 + µ], C = −(w1 + w2 + µ),
D = −(η1 + eta2 + φ1 + φ2 + µ)
E = −(γ + δ + µ) F = −(ε1ε2 + µ+ τ)
G = −µ
It is obtained that,

(A− λ)(B − λ)(C − λ)(D − λ)(E − λ)(F − λ)(G− λ) = 0 (3.26)

Hence, the trace of J(Ee) < 0. Thus, the Jacobian matrix J(Ee) < 0 has eigenvalues that contain neg-
ative real roots parts. Therefore, we conclude that the endemic equilibrium point is locally asymp-
totically stable. Therefore, they are locally asymptotically stable.

3.8. Global Stability of Disease Free Equilibrium

Considering the use of the Lyapunov algorithm for the system of equation (2.2), which is rapidly
tilting to the variance of zero neighborhood is said to be asymptotically stable as t > 0. Hence, taken
v(t, S1, S2, V, E, I,H,R) = C1I1 + C2I2 + C3I3

dV

dt
= C1I

′
1 + C2I

′
2 + C3I

′
3 (3.27)

dV

dt
= C1

{(
β1S1 + (1− λ)β2S2

)
I − (η1 + eta2 + φ1 + φ2 + µ)E

}
+ C2

(
(η1 + eta2)E − (γ + δ + µ)I

)

+C3

{
γI −

(
ε1ε2 + µ+ τ

)
H

}
dV

dt
≤ C1

(
β1S1 + (1− λ)β2S2

)
IC1 − (η1 + eta2 + φ1 + φ2 + µ)EC1 + C2(η1 + eta2)E − (γ + δ + µ)IC2

+C3γI −

(
ε1ε2 + µ+ τ

)
HC3

dV

dt
≤ C1

{(
β1S1 + (1− λ)β2S2

)
I2 − (η1 + eta2 + φ1 + φ2 + µ)I1

}
+ C2

(
(η1 + eta2)I1 − (γ + δ + µ)I2

)

+C3

{
γI2 −

(
ε1ε2 + µ+ τ

)
I3

}
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Subjecting C1 < C2 < C3 as C3 ≤ 0

dV

dt
≤

{
C2(η1 + η2)− C1(φ1 + φ2 + ε1 + ε2 + µ)

}
I1 +

{
C1βS1 + (1− λ)β2S2 + C3γ − C2(γ + δ + µ)

}
I2

−C3(η1 + η2 + µ+ τ)I3

Let

C2 =
β1Λπ(1− p) + w1ε1 + Λ(1− π) + w1φ2

(φ1 + µ)(γ + δ + µ)
,

C1 =
1

(η1 + η2 + φ1 + φ2 + µ)

dV

dt
≤

(
β1Λπ(1− p) + w1ε1 + Λ(1− π) + w1φ2(η1 + η2)

(φ1 + µ)(γ + δ + µ)
− 1

(η1 + η2 + φ1 + φ2 + µ)

)

+

(
β1S1 + (1− λ)S2β2

(η1 + η2 + φ1 + φ2 + µ)(γ + δ + µ)
− β1S1 + (1− λ)S2β2

(η1 + η2 + φ1 + φ2 + µ)(γ + δ + µ)

)

dV

dt
≤ (R0 − 1) (3.28)

It is crucial to keep in mind that when at dV
dt = 0. Equation (1) can be substituted to find that,

according to LaSalle’s invariance principle, is globally asymptotically stable whenever R0 > 1

3.9. Global Stability of Endemic Equilibrium

Theorem 4

The model of has no periodic orbits

Proof:

Employing the Dulac’s criterion as adopted by (Ahmed et al 2021). Let X = (S1, S2, V, E, I,H,R).
Define the Dulac’s function as G = 1

SE

G
dS1

dt
=

1

SE

{
Λπ(1− p)− β1S1I − p1S1 + w1V + φE −ϖS1 − µS1

}
=

Λπ(1− p)

SE
− β1

I
− p1

I
+

w1V

SE
+

φ

S
− ϖ

E
− µ

E

G
dS2

dt
=

1

SE

{
Λ(1− π)− (1− λ)βS2I − p2S2 + w2V + φE + ϱS1 − µS2

}
=

Λ(1− π)− (1− λ)β

E
− p2

E
+

w2V

SE
+

φ

S
+

ϱ

E
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G
dV

dt
=

1

SE

{
p1S1 + p2S2 − (w1 + w2)V − µV

}
=

p1
E

+
p2
E
− (w1 + w2 + µ

SE

G
dE

dt
=

1

SE

{
β1S1 + (1− λ)β2S2

)
I − (η1 + η2 + φ1 + φ2 + µ)E

}
=

β1S1 + (1− λ)β2
SE

+
(r + ε)I

SE
− (η1 + η2 + φ1 + φ2 + µ)

S

G
dI

dt
=

1

SE

{
(η1 + eta2)E − (γ + δ + µ)I

}
=

(η1 + eta2)

E
− (γ + δ + µ)I

SE

G
dH

dt
=

1

SE

{
γI −

(
ε1 + ε2 + µ+ τ

)
H

}
=

γI

SE
− (ε1 + ε2 + µ+ τ)

SE

G
dR

dt
=

1

SE

{
pπΛ +

(
(ε1ε2) + τ

)
H − µR

}
=

pπΛ

SE
+

(ε1ε2) + τ

SE
− µ

SE

d(GX)
dt is obtained as follows:

d(GX)

dt
=

∂

∂S1

{
G
dS1

dt

}
+

∂

∂S2

{
G
dS2

dt

}
+

∂

∂V

{
G
dV

dt

}
+

∂

∂E

{
G
dE

dt

}
+

∂

∂I

{
G
dI

dt

}
+

∂

∂H

{
G
dH

dt

}
+

∂

∂R

{
G
dR

dt

}

d(GX)

dt
=

∂

∂S1

{
Λπ(1− p)

SE
− (τ + η1 + η2) + βI + µ

E
+

φ1

SE

}
+

∂

∂S2

{
p2(1− π)

E
− (δ + γ + µ)

S

}
+

∂

∂V

{
η1 + η2

E
+

(ε1 + ε2 + η1 + µ)

S
− (ε+ δ + µ)I

SE

}
+

∂

∂E

{
β1 + (1− λ)β2

E
+

(η1 + η2 + ε2)I

SE
− µ

SE

}
+

∂

∂I

{
γ

SE

}
+

∂

∂H

{
γ + δ + µ

SE

}
+

∂

∂R

{
−µ
SE

}
d(GX)

dt
=

{
− µ

SE

}
+

{
− (δ + µ+ τ)

SE

}
+

{
− (η1 + η2 + µ)

SE

}
+

{
− (ε1 + ε2 + µ)

SE

}
+

{
− µ

SE

}
d(GX)

dt
= −

{
µ

SE
+

(µ+ τ + δ)

SE
+

(η1 + η2 + µ)

SE
+

µ

SE

}
d(GX)

dt
= −

{
2µ+ (µ+ τ + δ+) + (φ1 + φ2 + µ+ η)2 − (δ + γ + µ)

SE

}
< 0

This implies that the system has no closed orbit. Epidemiologically, the non-existence of a periodic
orbit implies that there are fluctuations in the number of infections, which makes it difficult to allocate
resources for the control of the disease.
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3.10. Sensitivity Analysis

The test for the sensitivity of Ro is to all the parameters in Ro. The normalized forward sensitivity
index is defined as shown below

∂Ro

∂P
=

∂Ro

∂P
× P

∂Ro
(3.29)

Hence,

∂Ro

∂Λ
× Λ

∂Ro
= 1.000

∂Ro

∂π
× π

∂Ro
= 1.000

∂Ro

∂β
× β

∂Ro
= 1.02101

∂Ro

∂δ
× δ

∂Ro
= 1.002190

∂Ro

∂p1
× p1

∂Ro
= −1.4200

(3.30)

respectively on each of the sensitive parameters of R0, result obtained as depicted below. Table (3.2)

Table 3.2: Sensitivity Analysis and Indices of the Disease Threshold

Parameters Indices

Λ 1.000
π 1.00
β 1.02101
δ 1.002190
p1 1.4200
µ -1.010
τ 1.0
ε1 1.210
ε2 1.10
φ1 0.1
φ2 0.1
η1 0.133
η2 0.154
p2 0.813
w1 0.2
w2 0.25

shows that the sensitivity indices of β, ω, ε are positive, while µ is negative. As the sensitivity indices
depend on the values of the other parameters, changes in those values will affect the sensitivity
indices. Based on the table, we can conclude that parameters β and ε1,ε2,p1 and p2 are the most
sensitive to the basic reproduction number R0 in equation (1) of the diphtheria model. Specifically,
increasing the value of ε1,ε2, will result in a 70.25% increase in R0, while increasing the value of τ
will lead to a 82.76%decrease in R0.
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4. Numerical simulation of the model with Laplace Adomian Decomposition method

4.1. Origin of Laplace Adomian Decomposition Method

The Laplace-Adomian Decomposition Method (LADM) is a powerful mathematical technique used
for solving differential equations, particularly nonlinear ones. It combines the classical Laplace
transform method with the Adomian polynomials to provide accurate and efficient solutions.
The method originated from the work of two mathematicians: Pierre-Simon Laplace and George
Adomian. The Laplace-Adomian Decomposition Method emerged as a hybrid technique, combining
Laplace transforms with Adomian polynomials. This integration improved the efficiency and
accuracy of solving nonlinear differential equations, making it applicable to a wide range of
scientific and engineering problems. Over the years, the Laplace-Adomian Decomposition Method
has gained popularity due to its simplicity, versatility, and effectiveness in solving nonlinear
problems. It has been applied across various fields, including physics, engineering, biology, and
finance, and continues to be an active area of research and application in mathematical modeling and
analysis. As a crucial component of this study, we will undertake a numerical simulation to examine
the effects of vaccination on the temporal behavior of the state variables within our proposed model.
To accomplish this, it is necessary to acquire the model solution. However, given the absence
of an exact solution for the model, we will employ distinct numerical approximation schemes of
the Laplace Adomian Decomposition Method to determine an accurate and precise approximate
solution for the model. This chosen solution will subsequently be employed to conduct the desired
numerical simulation.

4.2. Laplace Adomian Decomposition Method Algorithm

Consider the system of ordinary differential equations of the first order as follows;

y′1 = g1(x, y1, y2, y3, y4, . . . yn)

y′′2 = g2(x, y1, y2, y3, y4, . . . yn)
y′′′3 = g3(x, y1, y2, y3, y4, . . . yn)
...
yn3 = gn(x, y1, y2, y3, y4, . . . yn)


(4.31)

Where each represents the derivative of the first order of one of the unknown functions as a map-
ping depending on the independent variable x, and n unknown functions g1, g2, g3, g4, . . . gn), Since
every ordinary differential equation of n order can be written as a system consisting of n ordinary
differential equation of order one, we restrict our study to a system of differential equation of the first
order.

4.3. Analysis of Adomian’s Decomposition Method

Consider the differential equation in the general form

Ly(x) +Ry(x) +Ny(x) = f(x)

where Lis the linear operator of the highest-order derivative which is assumed to be invertible easily,
R is also a linear operator of order less than L, and Ny(x) indicates the non-linear term and f is the
source term. Thus applying the inverse operator L−1 to the above equation to obtain

y(x) = g0 + L−1

(
f(x)−Ry(x)−Ny(x)

)
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where g0 is the solution of the homogeneous equation,

Ly(x) = 0

The constants of integration involved in the solution of homogeneous are to be determined by the
initial conditions, according to the problem, whether it is an initial value problem or boundary value
problem. According to ADM, the solution of the unknown function y(x) can be expressed by an
infinite series of the form

y(x) =

∞∑
n=0

ynx

and the non-linear term can be decomposed by the infinite series of the form

Ny(x) =
∞∑
n=0

An

and,Ans are called Adomian’s Polynomials, which can be determined by the algorithm. By substi-
tuting into the above equation to obtain;

∞∑
n=0

yn(x) = g0 + L−1

[
f(x)−R

∞∑
n=0

ynx−
∞∑
n=0

An

]
where the components (y0, y1, y2, y3, y4, . . . yn) are determined by the recursive relation y0 = g0

yk+1 = −L−1(Ryk)− L−1(Ak), k ≥ 0

Given the model solution via the application of (LADM) for equation (1) and taking the Laplace
transform of both sides of the above equation

L

[
dS1

dt

]
= L[Λπ(1− p)]− L

[
β1S1I − p1S1 + w1V + φE −ϖS1 − µS1

]

L

[
dS2

dt

]
= L[Λ(1− π)]− L

[
(1− λ)βS2I − p2S2 + w2V + φE + ϱS1 − µS2

]

L

[
dV

dt

]
= L[p1S1 + p2S2]− L

[
(w1 + w2)V − µV

]

L

[
dE

dt

]
= L

[(
β1S1 + (1− λ)β2S2

)
I

]
− L

[
(η1 + η2 + φ1 + φ2 + µ)E

]

L

[
dI

dt

]
= L[(η1 + eta2)E]− L

[
(γ + δ + µ)I

]

L

[
dH

dt

]
= L[γI]− L

[(
ε1 + ε2 + µ+ τ

)
H

]

L

[
dR

dt

]
= L[pπΛ] + L

[(
ε1 + ε2 + τ

)
H − µR

]

Following the definition of Laplace Transform of derivatives

L

[
f ′(t)

]
= mf(t)− f(0) (4.32)
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Substituting into the above equation yields

mL

[
S1(t)

]
= S1(0) +

Λπ(1−p)
m + β1L[S1I − p1S1] + w1L[V ] + L

[
φE −ϖS1 − µS1

]

mL

[
S2(t)

]
= S2(0) +

Λ(1−π)
m + (1− λ)βL[S2I − p2S2 + w2V ] + L

[
φE + ϱS1 − µS2

]

mL

[
V (t)

]
= V (o) + (p1+p2)

m L[S1 + S2] + L

[
(w1 + w2)V − µV

]

mL

[
E(t)

]
= E(0) + (1−λ)β2

m + L

[(
β1S1 + S2

)
I

]
− L

[
(η1 + η2 + φ1 + φ2 + µ)E

]

mL

[
I(t)

]
= I(0) + (η1+eta2)

m + L

[
(γ + δ + µ)I

]

mL

[
H(t)

]
= H(0) + ε1+ε2

m + γL[I]− L

[(
+ µ+ τ

)
H

]

mL

[
R(t)

]
= R(0) + pπΛ

m + L

[(
ε1 + ε2 + τ

)
H − µR

]

(4.33)

where S1(0) = s0, S2(0) = s0, V (0) = v0, E(0) = e0, I(0) = i0, H(0) = h0, R(0) = r0 Letting the
non-linear terms SI = A and substitutes by taking the inverse Laplace Transform of both sides,

S1(t) =
s0
m + L−1

{
Λπ(1−p)

m2 + 1
mβ1L[S1I − p1S1] + w1L[V ] + 1

mL[φE −ϖS1 − µS1]

}

S2(t) =
s0
m + L−1

{
Λ(1−π)

m2 + 1
dm(1− λ)βL[S2I − p2S2 + w2V ] + 1

mL[φE + ϱS1 − µS2]

}

V (t) = v0
m + L−1

{
(p1+p2)

m0 L[S1 + S2] +
1
mL[(w1 + w2)V − µV ]

}

E(t) = v0
m + L−1

{
(1−λ)β2

m0 + 1
mL[

(
β1S1 + S2

)
I]− L[(η1 + η2 + φ1 + φ2 + µ)E]

}

I(t) = i0
m + L−1

{
(η1+eta2)

m2 + 1
mL[(γ + δ + µ)I]

}

H(t) = h0
m + L−1

{
ε1+ε2
m2 + 1

mγL[I]− 1
mL[

(
+ µ+ τ

)
H]

}

R(t) = r0
m + L−1

{
pπΛ
m2 + 1

mL[

(
ε1 + ε2 + τ

)
H − µR]

}



(4.34)

And the nonlinear term is given the Adomian polynomials if;
A0 = S0I0, A1 = S0I1, A2 = S0I2, A3 = S0I3, A4 = S0I4. . . .
Thus if

S1(t) =
∞∑
k=0

Sn(t), S2(t) =
∞∑
k=0

Sn(t), V (t) =
∞∑
k=0

Vn(t), E(t) =
∞∑
k=0

En(t), I(t) =
∞∑
k=0

In(t) . . .

31



Kolawole et al.

∞∑
k=0

Sn(t) =
s0
m

+ L−1

{
Λπ(1− p)

m2
+

1

m
β1L[

∞∑
k=0

Sn(t)I − p1S1] + w1L[V ] +
1

m
L[φE −ϖ

∞∑
k=0

Sn(t)S1 − µS1]

}
∞∑
k=0

Sn(t) =
s0
m

+ L−1

{
Λ(1− π)

m2
+

1

dm
(1− λ)βL[S2I − p2

∞∑
k=0

Sn(t)S2 + w2V ] +
1

m
L[φE

+ ϱ

∞∑
k=0

Sn(t)S1 − µS2]

}
∞∑
k=0

Vn(t) =
v0
m

+ L−1

{
(p1 + p2)

m0
L[S1 + S2] +

1

m
L[(w1 + w2)

∞∑
k=0

Vn(t)− µ

∞∑
k=0

Vn(t)]

}
∞∑
k=0

En(t) =
v0
m

+ L−1

{
(1− λ)β2

m0
+

1

m
L[

(
β1S1 + S2

)
I]− L[

∞∑
k=0

Vn(t)(η1 + η2 + φ1 + φ2 + µ)E]

}
∞∑
k=0

In(t) =
i0
m

+ L−1

{
(η1 + eta2)

m2
+

1

m
L[

∞∑
k=0

Vn(t)(γ + δ + µ)I]

}
∞∑
k=0

Hn(t) =
h0
m

+ L−1

{
ε1 + ε2
m2

+
1

m
γL[

∞∑
k=0

Vn(t)]−
1

m
L[

(
µ+ τ

)
]

}
∞∑
k=0

Rn(t) =
r0
m

+ L−1

{
pπΛ

m2
+

1

m
L[

( ∞∑
k=0

Vn(t)(ε1 + ε2) + τ

)
− µR]

}

The initial approximations of each class are given by;
S1(0) = s0, S2(0) = s0, V (0) = v0, E(0) = e0, I(0) = i0, H(0) = h0, R(0) = r0
Now, comparing the coefficients n = 1 . Using the recurrence relations, the following are obtained
For

S1(t) = (Λπ(1− p)− β1s0I − p1s0)t
2 + w1v0 +

1

2
(φe0 −ϖs0 − µs0)t+ s0

S2(t) = ((Λ(1− π)− (1− λ)βs0i0)t
2 − p2S2 + w2v0 + φs0e0 + ϱs0 − µs0s0)t+ s0

V (t) = (p1s0 + p2s0 − (w1 + w2)v0 − µs0)t+ v0

E(t) =

(
β1s0 + ((1− λ)β2s0

)
i0)t

2 − (η1 + η2 +
1

2
φ1 + φ2 + µ)s0 + e0

I(t) = ((η1 + eta2)e0s0)t
2 − 1

6
(γ + δ + µ)e0s0 + i0

H(t) = γi0 − λ

(
1

3
(ε1 + ε2 + µ+ τ)

)
s0i0 + h0

R(t) = (pπΛ)r0i0)t
2 +

1

2

(
(ε1 + ε2) + τ

)
e0h0 −

1

6
µi0s0 + r0

second iteraive terms of the numerical simulation at n = 2 is;

S2(t) =
1

3
(Λπ(1− p)− β1s0i0 − p1s0)t

2 +
1

3
w1v0 +

1

4
(φe0s0 −ϖi0e0 −

1

4
(τµ(1− π))s0)t

+ (βλ(1− λ)w1e0s0)t
2 +

1

3
(δ + µ+ γ)t

S2(t) =
1

3
((Λβ(1− π))− 1

2
(1− λ)βs0i0)t

3 − (p2S2 + w2v0 + φs0e0)−
1

3
(ϱs0 − µs0s0))t

2

+ s0(η1 + η2 + φ1 + φ2)t+ (ε1 + ε2)t
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V2(t) = −1

3
(p1s0 + p2s0)− ((w1 + w2)v0s0t

2 − µs0)t+ v0(1− λ)t

E2(t) =

(
β1s0 −

1

2
((1− λ)β2s0

)
i0)t

3 − 1

4
(η1 + η2t

2 +
1

2
φ1 + φ2 + µ)s0 + e0 + (

(δ + γ + η2)

(ε1 + ε2 + µ)
)t

I2(t) = −1

3
((η1 + eta2)e0s0)t

3 − 1

6
(γ + δ + µ)e0s0 + i0 +−

1

2
(1− λ)βs0i0)t

2 − ((1− p)Λβ + (1− π))t

H2(t) =
1

2
γi0e0 −

1

3
)λ(1− π)β1 + β2)t

2 +

(
1

3
(ε1 + ε2 + µ+ τ)

)
s0i0 + ()w1 + w2)i0S0 −

1

2

(
ε1 + ε2 + µ

)
t

R2(t) = −1

6
(
(1− π)β1 + β2i0s0

(δ + γ + µ)
)t3 − 1

2
(pπΛ)r0i0)t

2 +
1

2

(
(ε1ε2) + τ

)
e0h0 −

1

6
µi0s0r0 + (w2)v0s0)t

and so on. This can be further till desired number of iterations are obtained. Thus, the obtained raw
solution to each model compartment is obtained as:

S1(t) =

3∑
k=0

sn(t), S2(t) =

3∑
k=0

sn(t), V (t) =

3∑
k=0

vn(t), E(t) =

3∑
k=0

en(t), I(t) =

3∑
k=0

in(t) . . .

S1(t) = 500.012− 30.02t+ 1.13005t2 − 0.50709t3 − 3.500963× 10−2t4 − 5.17t5 × 10−2

S2(t) = 635.6747− 983.32746t+ 1.63525t2 − 0.576569t3 −−5.175597t4 × 10−2

V (t) = 1625.2− 12230.42t2 − 6.47254t3 − 9.71645256t−1 × 10−2

E(t) = 32.32− 0.53257461t− 1.0653t3 − 0.50709635t3 − 3.676423× 10−1t3 − 5.1797597t2 × 10−2

I(t) = 1736.0863 + 3765.87t2 + 73553.2t3 + 0.53274 + 9.832663× 103t4 − 7.73562t4 × 103

H(t) = 8.2346− 8.3427t+ 7.237638t3 − 0.50709t2 − 9.12343× 102t2 − 78836t2 × 102

R(t) = 4008.126− 2.836t+ 9.2352557t2 − 0.8236t3 − 4.253437× 103t2 − 5367t4 × 102

The outcomes of the results are evaluated to obtain the dynamic variations of the population of each
state variable over 10 Months and graphical illustration of simulation result is depicted thus;

Figure 4.2: Effect of avoiding close contact β with infected individuals in children to adult population.
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Figure 4.3: The effect of early diagno-
sis and treatment ε1 to ε2 in children to
adults of population.

Figure 4.4: Timely vaccination w1, w2 of
the infected population.

Figure 4.5: Effect of early diagnosis and
treatment on the exposed population.

Figure 4.6: Effect of booster doses on re-
covered children and adult Population.

Result and discussion of simulation iterations

It is obtained that fig. 4.2 Shows the effect of avoiding close contact β with Infected Individuals in
the Children to Adult Population. will bring about a fall in the spread of the disease between the
two sub-populations. Also from fig. 4.3 Shows the effect of early diagnosis and Treatment ε1 to ε2 in
Children to adults of population. of diphtheria as the level of the spread reduces in the population.
Fig. 4.4 also depicts that the level of timely vaccination w1, w2 of the infected population on the set
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of vulnerable populations reduces as it brings about a rapid spread in the diphtheria outbreak and
vice versa. Fig. 4.5 shows the effect of early Diagnosis and Treatment on the Exposed Population will
help in reducing the spread of diphtheria as this brings about a fall in the infected curve. While fig
4.6 shows the effect of booster Doses on recovered Children and Adult populations will increase the
population of susceptible individuals as a prominent tool in the control of the disease.

Conclusion

This manuscript has provided an in-depth examination of diphtheria transmission dynamics and
the critical role of vaccination in its control among age-structured populations. By developing and
analyzing a novel (SVEIHR) model, coupled with rigorous mathematical analyses and numerical
simulations, the study has highlighted the nuanced interplay between vaccination coverage, age
demographics, and disease dynamics. Investigation into disease-free equilibrium, stability analyses,
and sensitivity analysis of targeted parameters has yielded valuable insights into optimal vaccination
strategies for diverse settings and age groups. The findings emphasize the importance of vaccination
in mitigating diphtheria’s public health impact. Moreover, treatment emerges as a prominent control
measure for eradication. We recommend that health professionals prioritize treatment practices to
combat the spread of diphtheria. By advancing our understanding of transmission dynamics and in-
forming targeted interventions, this thesis contributes to global efforts to combat vaccine-preventable
diseases and achieve sustainable health outcomes. Equitable access to vaccination and evidence-
based interventions remain crucial for success.
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