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Abstract:
Cholera, caused by the Vibrio cholerae bacterium, poses a significant public health threat in remote
regions of Nigeria, especially during the dry season when access to treated water is limited. This
research aims to develop a comprehensive model to understand the rapid spread of cholera in these
areas and evaluate the efficacy of control policies, including educational programs, antibiotics, water
treatment rates, and environmental cleanliness through resolving the Existence and Uniqueness of
the model formulation, Positivity, and Boundedness, Basic Reproduction Number, R0 i.e. the thresh-
old of the disease dynamics. WhenR0 < 1 the versatility of the disease spreads will die out with time
and if R0 > 1, the persistence of the disease prevails over time. Local and Global stability analysis of
the model was obtained, also the sensitivity analysis for the targeted parameters was analyzed. Addi-
tionally, the study incorporates numerical simulations utilizing the homotopy perturbation method
to identify the specific impact of the control parameters are for in mitigating the spread of the Vib-
rio cholerae disease. The result obtained seeks to provide valuable insights into designing effective
intervention strategies aforementioned to combat cholera outbreaks in resource-constrained regions,
with a focus on improving water accessibility and implementation.

Keywords: Cholera, Basic Reproduction Number, Stability Analysis, Treatment Rate, Homotopy
Perturbation Method

1. Introduction

Cholera is a severe disease transmitted primarily through the fecal-oral route, often due to contam-
inated water and inadequate sanitation [1]. The bacterium *Vibrio cholerae* causes cholera and
thrives in poor hygiene environments, leading to severe diarrhea and dehydration that can be fa-
tal if untreated. Cholera outbreaks place immense pressure on healthcare systems, increase mortality
rates, and strain medical resources, especially in vulnerable populations like children and the elderly
[2, 3]. In Northern Nigeria, where cholera remains a persistent public health challenge, factors such
as arid climate, limited access to clean water, and inadequate sanitation exacerbate the spread of the
disease. This region’s geography, socio-economic conditions, and the dry season’s environmental
factors create favorable conditions for the proliferation of vibrio cholerae, making cholera control
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efforts particularly challenging [4, 5]. In order to understand and predict cholera outbreaks and
devise appropriate intervention strategies, it is critical to develop models that accurately represent
the dynamics of cholera transmission. The Susceptible, Vaccinated, Exposed, Infected, Recovered,
and Bacteria (SVEIRB) model offers a robust mathematical framework for studying the transmission
of cholera in environments such as Northern Nigeria. This model incorporates key epidemiologi-
cal factors such as the spread of bacteria, the immunity level of the population, and environmental
conditions that influence bacterial persistence, including the environmental bacteria coefficient (c)
[6].

Cholera transmission is driven by the interaction between humans and the environment, partic-
ularly through contact with contaminated water sources. Vibrio cholerae thrives in contaminated
water, especially in regions with inadequate sanitation and clean water access, as seen in Northern
Nigeria during the dry season. The transmission dynamics of cholera can be divided into two main
components: human-to-human transmission through fecal-oral routes and environmental transmis-
sion through exposure to contaminated water [7–9]. The Human-to-Human Transmission occurs
when individuals ingest food or water contaminated with the cholera bacteria. In areas with poor
hygiene, the bacteria spread rapidly from infected individuals to healthy people through shared wa-
ter sources or contaminated food [10, 11]. The environmental transmission persist in water bodies,
especially when they are poorly treated or stagnant, as is common in regions facing water scarcity.
During dry seasons in Northern Nigeria, water scarcity becomes more pronounced, forcing commu-
nities to rely on contaminated water sources for drinking, cooking, and irrigation [12]. This creates a
cyclical pattern of bacterial contamination and human exposure, driving the persistence and spread
of cholera [13]. A crucial factor in the environmental transmission of cholera is the environmental
bacteria coefficient (c), which represents the rate at which bacteria proliferate in the environment.
This coefficient is influenced by several factors, including temperature, water quality, and the avail-
ability of nutrients for the bacteria [14]. In arid regions such as Northern Nigeria, where water quality
deteriorates during the dry season, the environmental bacteria coefficient increases, leading to more
rapid bacterial growth and a higher likelihood of outbreaks [15–17]. Immunity Levels of the Pop-
ulation: Northerners and Their Vulnerability Immunity plays a significant role in determining the
susceptibility of a population to cholera. In Northern Nigeria, the immunity levels of the population
vary widely due to factors such as previous exposure to cholera, vaccination coverage, and overall
health conditions [16, 18, 19]. This model accounts for these variations by categorizing individuals
into different compartments: susceptible (S), vaccinated (V), exposed (E), infected (I), recovered (R),
and the bacterial environment (B) [20].

This compartment includes individuals who have not been exposed to cholera and have no im-
munity to the disease. These individuals are at the highest risk of infection, particularly during
outbreaks, and Vaccinated consists of individuals who have received a cholera vaccine, providing
them with some level of protection against the disease. Vaccination is a crucial component of cholera
control strategies, particularly in regions with recurring outbreaks [21]. An exposed individuals in
this compartment have been exposed to *Vibrio cholerae* but are not yet symptomatic. They may
develop the disease after the incubation period or recover without developing symptoms, depending
on their immune response [22]. More so, infected individuals includes individuals who are actively
infected and capable of transmitting the disease to others, either through direct contact or by con-
taminating water sources while recovered Individuals in this category have survived cholera and
gained immunity, either temporarily or permanently, depending on the strain of cholera and their
overall health [23]. Hence, bacteria contracted individuals represents the environmental reservoir of
cholera, including contaminated water bodies where the bacteria can persist and spread to humans
[24].The model’s ability to capture these different population dynamics is crucial for understanding
how cholera spreads and persists in Northern Nigeria, particularly given the population’s varied im-
munity levels. Immunity can be influenced by several factors, including age, nutrition, and access to
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healthcare. Children, the elderly, and those with weakened immune systems are particularly vulner-
able to severe cholera infections [25].Environmental Bacteria Coefficient (c) and Its Impact on Cholera
Transmission. The environmental bacteria coefficient (c) is a critical parameter in the SVEIRB model,
as it directly influences the rate at which *Vibrio cholerae* proliferates in water sources. This coef-
ficient is affected by several environmental factors, including temperature, nutrient availability, and
the presence of contaminants that may support bacterial growth [26]. In Northern Nigeria, the dry
season creates conditions that are particularly conducive to bacterial growth. Water scarcity forces
communities to rely on unsafe water sources, which are often contaminated with human waste due
to inadequate sanitation infrastructure. The environmental bacteria coefficient (c) increases as water
quality deteriorates, leading to more rapid bacterial proliferation and a higher risk of cholera trans-
mission [27]. This relationship between water quality and the environmental bacteria coefficient is
central to understanding the seasonal dynamics of cholera outbreaks in Northern Nigeria [28]. The
model can be expressed mathematically through a system of differential equations that describe the
rates of change between the different compartments (S, V, E, I, R, and B). These equations take into
account the transmission rates, recovery rates, and environmental factors that influence the spread of
cholera. One of the challenges in developing the SVEIRB model is accurately estimating the param-
eters that influence cholera transmission. These parameters, including the environmental bacteria
coefficient (c), transmission rates, and recovery rates, vary depending on local conditions such as
climate, sanitation infrastructure, and population density [29]. In Northern Nigeria, where water
scarcity and poor sanitation are pervasive, the environmental factors

Cholera is a severe disease transmitted primarily through the fecal-oral route, often due to con-
taminated water and inadequate sanitation [1]. The bacterium Vibrio cholerae causes cholera and
thrives in poor hygiene environments, leading to severe diarrhea and dehydration that can be fatal
if untreated. Vulnerable populations, such as children and the elderly, are particularly at risk [2].
The cholera outbreaks strain healthcare systems, increasing mortality rates and burdening medical
resources [3]. Northern Nigeria is especially vulnerable to cholera due to its arid climate and limited
access to clean water, particularly during the dry season. Water scarcity leads to more contaminated
water sources, creating ideal conditions for Vibrio cholerae to spread [4, 5]. The region’s health infras-
tructure struggles to cope with surges in cholera cases, worsening health outcomes [6]. It also have
significant economic impacts. Increased healthcare costs strain public health budgets, and the loss
of productivity due to illness disrupts economic activities [7]. The tourism industry may suffer, and
foreign investment can be deterred by poor health conditions. In northern Nigeria requires improved
sanitation, access to clean water, and stronger healthcare systems [8]. Public awareness on hygiene
and early detection is crucial. International cooperation is essential for building resilience and miti-
gating the economic impacts of cholera outbreaks. Developing effective cholera control strategies in
northern Nigeria is imperative [9–12]. This involves understanding the dynamics of cholera trans-
mission in remote areas during the dry season, where water scarcity and contaminated water sources
heighten the risk [14]. A comprehensive model capturing these dynamics, along with existing control
policies such as education, antibiotics, water treatment, and environmental cleanliness, is necessary
[13, 15, 16]. Numerical simulations, such as the homotopy perturbation method, can optimize con-
trol parameters and identify effective interventions [17]. Farm practices, drought, and contaminated
water consumption compound cholera challenges during the dry season [18, 19, 22]. Water scarcity
forces communities to use contaminated water for irrigation, creating a cycle of disease transmis-
sion. Persistent drought exacerbates water scarcity, compromising hygiene and increasing the risk
of waterborne diseases like cholera [20, 21]. Communities often rely on unsafe water sources, in-
advertently spreading Vibrio cholerae [23]. The complex interplay of farming practices, drought,
and contaminated water consumption is crucial for addressing cholera in northern Nigeria . This
understanding can inform targeted and effective control measures. The goal is to empower com-
munities with the knowledge and tools to break the cholera cycle and build resilience [24]. The
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findings aim to inform policy development, public health initiatives, and community interventions,
fostering a cholera-resistant population in these vulnerable regions. However, the need for a multi-
faceted approach that includes improved sanitation, clean water access, robust healthcare systems,
public awareness, and international cooperation, the strategy aims to mitigate the impacts of cholera
[25, 26]. Moreover, the use of numerical simulations to optimize control strategies can help in de-
veloping effective interventions tailored to the unique challenges of northern Nigeria [27]. Through
comprehensive measures addressing both immediate and long-term needs, the goal is to reduce the
incidence of cholera and improve the overall health and resilience of the affected communities.

2. Mathematical Formulation

A total population N(t) is considered which is divided into sub-populations of S of susceptible pop-
ulation, E(t) exposed , I(t) infected, R(t) recovered population and B(t) bacteria causing population
. The level of individuals migrating into the population at Λ, effective contact rate of an individual
τ and the level of the spread induced rate at δ. Transmission rate in cholera disease between the
two or more population of individuals being exposed at β . The modification of the disease capacity
multiplicative effect is at a rate c, and enlightenment through educational program initiatives on the
rapid spread on how deadly cholera is is at a rate of ω. Prevention on the spread with a waning rate
η and regular treatment of cholera disease with antibiotics is at rate of ε. An infected individual are
subjected to recover at a rate of r and individuals that are hospitalized having been infected is (1− ε)
while that of infected are said to recover at a rate of (r + ε). Moreso, set of bacteria individual form
back into the susceptible population through water treatment occurs at at rate of T when immunity
level is high. Respective individuals across the sub-population are subjected to death naturally by µ.
Pictorial illustration of this can be displayed from the figure below

2.1. Existing Model

A proposed compartmental-based model for analyzing the dynamics of the spread of cholera
transmission disease. The governing model is given by the system of non-linear ordinary differential
equations below:

dS

dt
= µN − β1(I, t)SI − β2(B, t)

SB

κ+B
− µS

dI

dt
= β1(I, t)SI − β2(B, t)

SB

κ+B
− (γ + µ)I

dR

dt
= γI − µR

dB

dt
= rB

(
1− B

K

)
+ ξI − δ(t)B

N is the total population as S(0) = so, I(0) = io, R(0) = ro, B(0) = bo ≥ 0.

2.2. The Modified Model

The modeified was extended by incorporating educational program ω, water treatment rate with
antibiotics T and environmental bacteria cleanliness c the recovery rate.The model equation is as
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follows.

dS

dt
= Λ− βS(t)I(t)− (τ + ω)S(t) + TB(t)− µS(t)

dE

dt
= βS(t)I(t)− (c+ η + µ)E(t)

dI

dt
= τS(t) + (c+ η)E(t)− (ε+ δ + r + µ)I(t)

dR

dt
= ωS(t) + (r + ε)I(t)− µR(t)

dB

dt
= −(T + µ)B(t)

(2.1)

By initial condition that 0 ≤ T ≤ 1. When T = 0, vulnerable individuals are not immunized or
immunization does not affect the vulnerable compartment.

2.3. Tables and Figures

Table below depicts description of respective parameters, values and references.

Table 2.1: Description of the parameters and values

Parameter Description Values Units Refs.

N Total population 70000
S Susceptible population of children 42500
E Exposed population 2050
I Infected population 1042
R Recovered population 21485
B Vibro Cholerae (Parasite) population 2923 per day−1 [12]
Λ Recruitment rate into the susceptible population 0.012 per day−1 [5, 8]
τ Vibro Cholerea multiplicative effect 0.31 per day−1 [19]
T Water treatment rate on rapid vibro intrinsic growth rate 0.011 per day−1 [20–23]
µ Natural death from the population 0.01 per day−1 [18]
ω Rate of educational program 0.2102 per day−1 [1, 7, 15]
β Transmission Coefficient 0.1 per day−1 [13]
η Wanning rate of immunity 0.2317 per day−1 [2]
c Environmental bacteria capacity 0.31 Assumed (per day−1) [7, 18]
ε Treatment rate with antibiotics 0.815 per day−1 [17]
δ Rate of induced death 0.3 per day−1 [10, 16]
r Recovery rate from infected population 1.7601 per day−1 [12, 19]
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Figure 2.1: The Schematic flow of the SEIRB Model

3. Model Analysis

3.1. Existence and Uniqueness of the Model

Examining the population-related segment of the system of equations, we have
N(t) = S(t) + E(t) + I(t) +R(t) +B(t)
The derivatives obtained as,

dN(t)

dt
=

d

dt

(
S(t), , E(t), I(t), R(t), B(t)

)
dN(t)

dt
=
dS

dt
+
dE

dt
+
dI

dt
+
dR

dt
+
dB

dt

dN(t)

dt
=

{
(Λ− βS(t)I(t)− (τ + ω)S(t) + TB(t)− µS(t)) + (βS(t)I(t)− (c+ η + µ)E(t))

+ (τS(t) + (c+ η)E(t)− (ε+ δ + r + µ)I(t)) + (ωS(t) + (r + ε)I(t)− µR(t)) + (−(T + µ)B(t))

}
dN(t)
dt ≤ Λ− µN − δI(t) where no outbreak of cholera is observed, δ = 0

dN
dt + µN ≤ Λ

N(t)eµt = Λeµt

µ + C, as where c is a constant of integration

N(t) = Λ
µ + Ce−µt

By the initial condition at t = 0
C = N(t)− Λ

µ C = N(0)− Λ
µ

As time progresses, N(t) is such that;

lim
t→∞

N(t) ≤ lim
t→∞

[
Λ

µ
+

(
N(0)− Λ

µ

)
e−µt

]
=

Λ

µ
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If N(0) ≤ Λ
µ , then N(t) ≤ Λ

µ . Thus, ℜ5
+ is a positive invariant set under the flow described by

3.2 so that no solution path leaves through any boundary of ℜ5
+. Hence, it is sufficient to consider

the dynamics of the model in the domain ℜ5
+. In this region, the model can be considered to be

mathematically and epidemically well-posed representing a physical problem. This shows that the
total population N(t), i.e., the sub-population S(t), E(t), I(t), R(t), and B(t) of the model are bounded
and is a unique solution. Hence, it represents a physical problem.

3.2. Positivity and Boundedness of the Model Solution

Theorem 1

Let x, y be distinct points of a normed linear space (X, ∥ · · · ∥) over ℜ. Then the map f : [0, 1] ⊆ ℜ →
(X, ∥ · ∥), such that f(λ) = λx+ (1− λ)y is continuous on [0, 1]

Proof :

Let λ0 ∈ [0, 1]. then f(λ0) = λ0x+ (1− λ0)y for any λ ∈ [0, 1],

∥ f(λ)− f(λ0) ∥= ∥ (λ− λ0)x+ (λ0 − λ)y ∥
≤| λ− λ0 | (∥ x ∥ + ∥ y ∥).

If ε > 0 is given, let δ = ε
∥x∥+∥y∥ . If | λ − λ0 |< δ, then the ∥ f(λ) − f(λ0) ∥< ε, . Therefore, f is

continuous at λ0. Since λ0 is an arbitrary point in [0, 1], then f is continuous on [0, 1]. Let X be a linear
space over ℜ. If x, y are distinct points of X, the set λx+ (1− λ)y, 0 ≤ λ ≤ 1.
Let;
f1 = Λ− βS(t)I(t)− (τ + ω)S(t) + TB(t)− µS(t)

f2 = βS(t)I(t)− (c+ η + µ)E(t)

f3 = τS(t) + (c+ η)E(t)− (ε+ δ + r + µ)I(t)

f4 = ωS(t) + (r + ε)I(t)− µR(t)

f5 = −(T + µ)B(t)

Then,

|df1dS | = |β + (τ + ω) + µ| <∞, |df1dE | = |0| <∞, |df1dI | = |β| <∞, |
df1
dR | = |0| <∞,

|df1dB | = |T | <∞
|df2dS | = |β| <∞, |df2dE | = |c+ η + µ| <∞, |df2dI | = |0| <∞, |df2dR | = |0| <∞,

|df2dB | = |0| <∞
|df3dS | = |τ | <∞, |df3dE | = |c+ η| <∞, |df3dI | = |(ε+ δ + r + µ)| <∞, |df3dR | = |0| <∞,

|df3dB | = |0| <∞
|df4dS | = |ω| <∞, |df4dE | = |0| <∞, |df4dI | = |r + ε| <∞, |df4dR | = |µ| <∞,

|df4dB | = |0| <∞
|df5dS | = |0| <∞, |df5dE | = |0| <∞, |df5dI | = |0| <∞, |df5dR | = |0| <∞,

|df5dB | = |T + µ| <∞


The bounded solution of the model exist in all the compartments respectively, therefore is well-posed.
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3.3. Disease Free Equilibrium

From the above system of equations, at equilibrium when no outbreak of cholera is observed in the
total population, I(t) = 0

dS
dt = dE

dt = dI
dt =

dR
dt = dB

dt = 0

0 = Λ− βS(t)I(t)− (τ + ω)S(t) + TB(t)− µS(t) (i)

0 = βS(t)I(t)− (c+ η + µ)E(t) (ii)

0 = τS(t) + (c+ η)E(t)− (ε+ δ + r + µ)I(t) (iii)

0 = ωS(t) + (r + ε)I(t)− µR(t) (iv)

0 = −(T + µ)B(t) (v)

From equations obtained above (v), 0 = −(T + µ)B(t), B = 0
From (iii)
0 = βS(t)I(t)− (c+ η + µ)E(t), E = 0
Also from (i)
0 = Λ− βS(t)I(t)− (τ + ω)S(t) + TB(t)− µS(t), S = Λ

(r+ω+µ)

it is obtained from (iv)
0 = ωS(t) + (r + ε)I(t)− µR(t), R = Λω

µ(r+ω+µ)

Hence, the disease free equilibrium, DFE= (So, Eo, Io, Ro, Bo) where So ̸= 0 as I = 0

DFE =

{
So =

Λ
(r+ω+µ) , E = 0, I = 0, R = Λω

µ(r+ω+µ) , B = 0

}

3.4. Endemic Equilibrium Point

Let Ee = (S∗, E∗, I∗, R∗, B∗) as Endemic equilibrium where I ̸= 0. Consider the system of equation
2.1 at equilibrium point as:

0 = Λ− βS∗(t)I∗(t)− (τ + ω)S∗(t) + TB∗(t)− µS∗(t) (i)

0 = βS∗(t)I∗(t)− (c+ η + µ)E∗(t) (ii)

0 = τS∗(t) + (c+ η)E∗(t)− (ε+ δ + r + µ)I∗(t) (iii)

0 = ωS∗(t) + (r + ε)I∗(t)− µR∗(t) (iv)

0 = −(T + µ)B∗(t) (v)

S∗ =
Λ

βI∗ + (τ + ω) + µ

from (iv),0 = ωS∗(t) + (r + ε)I∗(t)− µR∗(t)

R∗ =
ωS∗ + (r + ω)I∗

µ

From (iii)

0 = τS∗(t) + (c+ η)E∗(t)− (ε+ δ + r + µ)I∗(t)

I∗ =
τS∗ + (c+ η)E∗

(ε+ δ + µ+ r)
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From (ii)
0 = βS∗(t)I∗(t)− (c+ η + µ)E∗(t)

E∗ =
βS∗I∗

(c+ µ+ η)

B∗ =
βS∗I∗ + (τ + ω)S∗ + µS∗

T − Λ

Hence, Ee = (S∗, E∗, I∗, R∗, B∗) are obtained as:

Ee =

{
S∗ =

Λ

βI∗ + (τ + ω) + µ
,R∗ =

ωS∗ + (r + ω)I∗

µ
, I∗ =

τS∗ + (c+ η)E∗

(ε+ δ + µ+ r)
, E∗ =

βS∗I∗

(c+ µ+ η)
,

B∗ =
βS∗I∗ + (τ + ω)S∗ + µS∗

T − Λ

}
.

3.5. Basic Reproduction Number (Ro)

The basic reproduction number denoted as R0 . It is necessary to quantify the probability of new
cholera infections resulting from a single carrier or sick person in a population without previous
illnesses. We use the next-generation approach to create the system described in System of equation,
focusing on the infectious classes E, I, and B. The F and V matrices, which represent the rates of new
infections and transitions into and out of the infected compartment, respectively, are computed as
part of this methodology. These matrices are obtained using a complex derivation from the equations.
There are two disease states but only one way to create a new infection. Hence, exposed, infected en-
able the cholera spread in compartments of the model which are connected from system of equation
2.1. This denotes the number of secondary infections caused as a result of infected individuals in a
population. Where Ro = F × V −1.To Obtain Ro from the the spread of cholera disease, it is deduced
using next generation matrix where at equilibrium, non-infected sub-populations are disease-free.
The transition and transmission matrices V and F are obtained from the partial derivatives of f and v
to (E, I, B) evaluated at the disease-free equilibrium E1

Fi =

(
∂fi(xi)

∂xj

)
Vi =

(
∂νi(xi)

∂xj

)
i, j = 1, 2 . . . 7

F =

 βS(t)I(t) 0 0
τS(t) 0 0
0 0 0

 V =

 (c+ µ+ η)E(t)
−(c+ η)E(t) + (ε+ δ + µ+ r)I(t)

(T + µ)B(t)



F =

 0 βS0 0
0 0 0
0 0 0


V =

 (c+ µ+ η) 0 0
−(c+ η) (ε+ δ + µ+ r) 0

0 0 (T + µ)B



F =

 0 βΛ
(r+ω+µ) 0

0 0 0
0 0 0


The determinant and inverse of V is thus
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|V | = (c+ µ+ η)(ε+ δ + µ+ r)(T + µ)
As it is obtained that

V −1 =


1

(c+µ+η) 0 0
−(c+η)

(c+µ+η)(ε+δ+µ+r)
1

(ε+δ+µ+r) 0

0 0 1
(T+µ)


Given that, Ro = F × V −1 denoting the product of the matrices obtained

Ro =

 0 βΛ
(r+ω+µ) 0

0 0 0
0 0 0




1
(c+µ+η) 0 0
−(c+η)

(c+µ+η)(ε+δ+µ+r)
1

(ε+δ+µ+r) 0

0 0 1
(T+µ)


=

 −
(c+η)βΛ

(µ+r+ω)(c+r+η)(ε+δ+r+µ)
βΛ

(ς+δ+r+µ)(µ+r+ω) 0
τβΛ

(c+r+η)(µ+r+ω) 0 0

0 0 0

− λ
 1 0 0

0 1 0
0 0 1

 on the invariant region of

respective eigen-values it is obtained that λi i = 1 . . . 6 of ℜ5
+ such that λ ≥ 0

Ro =
βΛ

(ε+ δ + r + µ)(µ+ r + ω)
(3.2)

3.6. Local Stability of Disease Free Equilibrium

Theorem 2

The disease-free equilibrium of the model for transmission of cholera disease is locally asymptotically
stable if Ro < 1 and Ro > 1 whenever there is persistency in the spread of disease.

Proof:

The local stability of disease-free equilibrium at So = βΛ
(µ+r+ω) . The Jacobian matrix of the system

2.1 as obtained that |JE1 − λiI| = 0 i = 1, 2 . . . 5. Thus, the disease-free equilibrium is locally
asymptotically stable if the eigenvalues λi, i = 1, . . . , 5 of the matrix formed satisfies the condition.
The stability criterion of disease-free equilibrium, the general Jacobian matrix has been resolved for
as;

J(E1) =


−(βI(t) + µ+ (τ + ω)) 0 −βS0 0 T

βI(t) −(c+ η + µ) βS0 0 0
τ (c+ η) −(ε+ δ + µ+ r) 0 0
ω 0 (r + ε) −µ 0
0 0 0 0 −(µ+ T )


Then at disease free equilibrium,


−(τ + ω + µ) 0 − βΛ

(µ+r+ω) 0 0

0 −(c+ η + µ) βΛ
(µ+r+ω) 0 0

τ (c+ η) −(ε+ δ + µ+ r) 0 0
ω 0 (r + ε) −µ 0
0 0 0 0 −(T + µ)


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∣∣∣∣∣∣∣∣∣∣∣

−(τ + ω + µ)− λ1 0 − βΛ
(µ+r+ω) 0 0

0 −(c+ η + µ)− λ2 βΛ
(µ+r+ω) 0 0

τ (c+ η) −(ε+ δ + µ+ r)− λ3 0 0
ω 0 (r + ε) −µ− λ4 0
0 0 0 0 −(T + µ)− λ5

∣∣∣∣∣∣∣∣∣∣∣
= 0

Also,
where A = −(ε+ δ + µ+ r). Thus it is obtained that, λ = −(ε+ δ + µ+ r)
As obtained from the previously examined determinant of respective eigenvalues, λ = −(c+ η + µ).
Similarly, the last of the eigenvalue is obtained as;∣∣∣∣∣∣∣∣∣∣∣

−(τ + ω + µ)− λ1 0 − βΛ
(µ+r+ω) 0 0

0 −(c+ η + µ)− λ2 βΛ
(µ+r+ω) 0 0

τ (c+ η) −(ε+ δ + µ+ r)− λ3 0 0
ω 0 (r + ε) −µ− λ4 0
0 0 0 0 −(T + µ)− λ5

∣∣∣∣∣∣∣∣∣∣∣
= 0,

[−(τ+ω+µ)−λ]

∣∣∣∣∣∣∣∣∣∣∣

− βΛ
(µ+r+ω) 0 0

0 −(c+ η + µ)− λ βΛ
(µ+r+ω) 0 0

τ (c+ η) −(ε+ δ + µ+ r)− λ 0 0
ω 0 (r + ε) −µ− λ 0
0 0 0 0 −(T + µ)− λ

∣∣∣∣∣∣∣∣∣∣∣
= 0

Lastly, from the Jacobian matrix earlier stated,[λ = −(τ + ω + µ), respectively;

λ1 = −(τ + ω + µ) < 0
λ2 = −(c+ µ+ η) < 0

λ3 = −(ε+ δ + r + µ) < 0

λ4 = −µ < 0

λ5 = −(T + µ) < 0


Hence, they are negatively invariant in the regionℜ5

+, therefore they are locally asymptotically stable.

3.7. Local Stability of Endemic Equilibrium

Theorem 3

Suppose X = xn is a space of sequence of real number and we define

d(x, y) =

(
n∑
i=1

| xi |p
) 1

p

, p ≥ 1

X with the metric is called ξpn space. If
∑∞

i=1 | x |p< ∞ or absolutely convergent and

d(x, y) =

(∑∞
i=1 | xi − yi |p

) 1
p

, then X with this metric is called an ξp space. It can be

checked that for each n;
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Proof:

0 ≤ x21 + x22 + x23 + . . .+ x2n ≤ (| x1 | + | x2 | + | x3 | + . . .+ | xn |)2

This will result to;

x21 + x22 ≤ (| x1 | + | x2 |)2

Therefore,

0 ≤ (x21 + x22 + x23 + . . .+ x2n)
1
2 ≤| x1 | + | x2 | + | x3 | + . . .+ | xn |

If
∑∞

n=1 | xn | converges, that is,
∑∞

n=1 | xn | is absolutely convergent, then

0 ≤ (x21 + x22 + x23 + . . .+ x2n)
1
2 ≤| x1 | + | x2 | + | x3 | + . . .+ | xn |=

∞∑
n=1

| xn |<∞

Therefore,

0 ≤ sn = x21 + x22 + x23 + . . .+ x2n ≤

[ ∞∑
n=1

| xn |

]2
<∞

The sequence xn is monotone increasing and bounded above, it therefore converges. Thus
∑∞

n=1 x
2
n

converges if
∑∞

n=1 xn converges absolutely i.e if xn ∈ ξ1, then xn ∈ ξ2 where ξ1 ≤ ξ2.
In case of ξ1 denote the set of all sequences xn of real numbers such that

∑∞
n=1 xn is convergent

absolutely i.e
∑∞

n=1 | xn |<∞, whereas ξ2 denote the set of all sequence xn of real numbers such that∑∞
n=1 x

2
n < ∞ converges. From the preceding, xn ∈ ξ1 ←→ xn ∈ ξ2 i.e ξ1 ⊆ ξ2. Further, if xn = 1

n
3
4

,

then
∑∞

n=1 | xn | diverges, and thus xn /∈ ξ1. But
∑∞

n=1 x
2
n =

∑∞
n=1

1

n
3
4

converges, implying that

xn ∈ ξ2. We conclude then that ξ2 ⊆ ξ1 and thus ξ1 ̸= ξ2. If xn, yn are sequences of real numbers,
then

n∑
i=1

(xi = yi)
2 ≤

n∑
i=1

x2i +

n∑
i=1

y2i + 2

[
n∑
i=1

x2i

] 1
2
[

n∑
i=1

y2i

] 1
2

Therefore if
∑∞

i=1 x
2
i < ∞ and

∑∞
i=1 y

2
i < ∞ then

∑∞
i=1(xi − yi)2 < ∞ for all n. The monotone

increasing sequence

[∑∞
i=1(xi−yi)2

]
is then bounded above and hence converges i.e

∑∞
i=1(xi−yi)2 <

∞. Thus (xn − yn) ∈ ξ2 if xn, yn are in ξ2. The endemic equilibrium of the model outlining the
transmission of diphtheria diseases is locally asymptotically stable if Ro < 1 and unstable otherwise.
Let S = p+ S∗, E = q + E∗, I = r + I∗, R = a+R∗, B = b+B∗

By linearizing each state variable of the model formulation, it is obtained that,

dp

dt
= Λ− β(p+ S∗)(r + I∗)− (τ + ω)(p+ S∗) + T (b+B∗)− µ(p+ S∗)

dq

dt
= β(p+ S∗)(r + I∗)− (c+ η + µ)(q + E∗)

dr

dt
= τ(p+ S∗) + (c+ η)(q + E∗)− (ε+ δ + r + µ)(r + I∗)

da

dt
= ω(p+ S∗) + (r + ε)(r + I∗)− µ(a+R∗)

db

dt
= −(T + µ)(b+B∗)
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Hence,
dp

dt
= −(βpr + τ + ω + µ) + Tb+ higher − order + non− linear + . . .

dq

dt
= (βpr)− (c+ µ+ η)q + higher − order + non− linear + . . .

dr

dt
= τp+ (c+ η)q − (ε+ δ + r + µ)r + higher − order + non− linear + . . .

da

dt
= ωp+ (r + ε)r − µa+ higher − order + non− linear + . . .

db

dt
= −(T + µ)b+ higher − order + non− linear + . . .

The Jacobian matrix of the system

J(E∗) =


−(βr + τ + ω + µ) 0 −βp 0 T

βr −(c+ µ+ η) βp 0 0
τ (c+ η) −(ε+ δ + µ+ r) 0 0
ω 0 (ε+ r) −µ 0
0 0 0 0 −(T + µ)


From the characteristic equation of |J(E∗)− λI| = 0∣∣∣∣∣∣∣∣∣∣

a− λ 0 −βp 0 T
βr b− λ βp 0 0
τ (c+ η) c− λ 0 0
ω 0 (ε+ r) d− λ 0
0 0 0 0 e− λ

∣∣∣∣∣∣∣∣∣∣
= 0

It is respectively obtained that the eigen-values become{
a− λ)(b− λ)(c− λ)(d− λ)(e− λ) = 0

}
where a =−(βr + τ + ω + µ), b = −(c+ µ+ η), c = −(ε+ δ + µ+ r), d = −µ
and e = −(T + µ) Then we have,

(a− λ)(b− λ)(c− λ)(d− λ)(e− λ) = 0

Hence, the trace of JEe < 0. Thus, the Jacobian matrix JEe < 0 has eigenvalues that contain negative
real roots parts. Therefore, we conclude that the endemic equilibrium point is locally asymptotically
stable. Therefore, they are locally asymptotically stable as R0 < 1.

3.8. Global Stability of Disease Free Equilibrium

Considering the use of the Lyapunov algorithm for the system of equation 2.1, which is rapidly tilting
to the variance of zero neighborhood is said to be asymptotically stable as t > 0. Hence, taken
ψ(t, S,E, I, R,B) = C1I1 + C2I2 + C3I3

dψ

dt
= C1I

′
1 + C2I

′
2 + C3I

′
3

dψ
dt = C1

(
βS0I2 − (c+ η + µ)I1

)
+ C2

(
τS0 + (c+ η)I1 − (ε+ δ + r + µ)I2

)
+ C3

(
− (T + µ)I3

)
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dψ
dt ≤ [C2(c+ η)I1 − C1(c+ η + µ)I1] + [C1βS0I2 − C2(ε+ δ + µ+ r)I2] + C2τS0 − C3(τ + µ)I3

dψ
dt ≤ [C2(c+ η)− C1(c+ η + µ)]I1 + [C1βS0 − C2(ε+ δ + µ+ r)]I2

at S0 = Λ
(τ+ω+µ) , C1 =

1
(c+η+µ) , C2 =

βΛ
(c+η+µ)(ε+δ+µ+r)(τ+ω+µ)

dψ
dt ≤

(
βΛ(c+η)

(c+η+µ)(ε+δ+µ+r)(τ+ω+µ) −
(c+η+µ)
(c+η+µ)

)
+

(
βΛ

(τ+ω+µ)(c+η+µ) −
βΛ(ε+δ+µ+r)

(ε+δ+µ+r)(τ+ω+µ)(c+η+µ)

)
dψ
dt ≤

(c+η+µ)
(c+η)

{
βΛ

(ε+δ+µ+r)(τ+ω+µ) − 1

}
dψ

dt
≤ Γ(R0 − 1)

It is crucial to keep in mind that when at dψ
dt = 0 and Γ = (c+η+µ)

(c+η) . Equation 2.1 can be substituted
to find that, according to LaSalle’s invariance principle, is globally asymptotically stable whenever
R0 > 1 It is crucial to keep in mind that when at dψdt = 0. Equation 2.1 can be substituted to find that,
according to LaSalle’s invariance principle, is globally asymptotically stable whenever R0 > 1

3.9. Global Stability of Endemic Equilibrium

Theorem 4

The model of has no periodic orbits Dulac’s criterion states that if P (x, y) is continuously differen-
tiable and∇ · (PF) ̸= 0, no limit cycles exist in F’s domain.

Proof:

Employing the Dulac’s criterion on the sub-compartments of the model formulation it is obtained
that
Let X = (S,E, I,R,B). Define the Dulac’s function as G = 1

SE

G
dS

dt
=

1

SE

{
Λ− βS(t)I(t)− (τ + ω)S(t) + TB(t)− µS(t)S

}
=

Λ

SE
− (τ + ω) + βI + µ

E
+
TB

SE

G
dE

dt
=

1

SE

{
βS(t)I(t)− (c+ η + µ)E(t)

}
=

βI

E
− (c+ η + µ)

S

G
dI

dt
=

1

SE

{
τS(t) + (c+ η)E(t)− (ε+ δ + r + µ)I(t)

}
=

τ

E
+

(c+ η)

S
− (ε+ δ + r + µ)I

SE

G
dR

dt
=

1

SE

{
ωS(t) + (r + ε)I(t)− µR(t)

}
=

ω

E
+

(r + ε)I

SE
− µR

SE
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G
dB

dt
=

1

SE

{
− (T + µ)B(t)

}
=
−(T + µ)B

SE

d(GX)
dt is obtained as follows:

d(GX)

dt
=

∂

∂S

{
G
dS

dt

}
+

∂

∂E

{
G
dE

dt

}
+

∂

∂I

{
G
dI

dt

}
+

∂

∂R

{
G
dR

dt

}{
G
dB

dt

}

d(GX)

dt
=

∂

∂S

{
Λ

SE
− (τ + ω) + βI + µ

E
+
TB

SE

}
+

∂

∂E

{
βI

E
− (c+ η + µ)

S

}
+

∂

∂I

{
τ

E
+

(c+ η)

S
− (ε+ δ + r + µ)I

SE

}
+

∂

∂R

{
ω

E
+

(r + ε)I

SE
− µR

SE

}
+

∂

∂B

{
−(T + µ)B

SE

}
d(GX)

dt
=

{
− µ

SE

}
+

{
− (ω + µ+ τ)

SE

}
+

{
− (c+ η + µ)

SE

}
+

{
− (ε+ δ + r + µ)

SE

}
+

{
− µ

SE

}
d(GX)

dt
= −

{
µ

SE
+

(µ+ τ)

SE
+

(c+ µ+ ω)

SE
+

µ

SE

}
d(GX)

dt
= −

{
2µ+ (µ+ τ) + (c+ µ+ η)

SE

}
< 0

This implies that the system has no closed orbit. Epidemiologically, the non-existence of a periodic
orbit implies that there are fluctuations in the number of infections, which makes it difficult to allocate
resources for the control of the disease.

3.10. Sensitivity Analysis

The test for the sensitivity of Ro is to all the parameters in R0. The normalized forward sensitivity
index is defined as shown below

∂Ro
∂P

=
∂Ro
∂P
× P

∂Ro

Hence,
∂Ro
∂Λ
× Λ

∂Ro
= 1.000000

∂Ro
∂ω
× ω

∂Ro
= 1.000000

∂Ro
∂β
× β

∂Ro
= 1.0002101

∂Ro
∂δ
× δ

∂Ro
= 1.002190

∂Ro
∂r
× r

∂Ro
= −1.0004200

∂Ro
∂µ
× µ

∂Ro
= −1.0001210

∂Ro
∂ε
× ε

∂Ro
= 1.101210
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Table 3.2: Sensitivity Analysis and Indices of the Disease Threshold

Parameters Indices
Λ 1.000000
ω 1.000000
β 1.0002101
δ 1.002190
r 1.0004200
µ -1.0001210
τ 1.101210

respectively on each of the sensitive parameters of R0, result obtained as depicted below. Table 3.2
shows that the sensitivity indices of β, ω, ε are positive, while µ is negative. As the sensitivity indices
depend on the values of the other parameters, changes in those values will affect the sensitivity
indices. Based on the table, we can conclude that parameters β and ε are the most sensitive to the
basic reproduction number R0 in equation 3.2 of the cholera model. Specifically, increasing the value
of εwill result in a 78.68% increase inR0, while increasing the value of τ will lead to a 62.64%decrease
in R0.

4. Numerical simulation

In our pursuit of numerically simulating the mathematical model, we aim to offer an approximate
solution through the application of the homotopy perturbation method. This choice is motivated by
the absence of an exact solution associated with the model. The forthcoming sections will delve into
the analysis of the homotopy perturbation method, elucidating its application and implications in
our quest for a solution.

∆(α) = κ(τ) τ ∈ λ

Subject to the boundary condition
Ψ(α, αn) = 0 τ ∈

∏
Operator ∆ represents the differential operator, Ψ denotes the boundary operator, κ(τ) is an analytic
function, Φ is a defined domain bounded by

∏
, and αnis a normal vector derivative drawn externally

from Φ. Thus we can separate the operator ∆(α) into two:

∆(α) = LT (α) +NT (α)

The operator LT (α), NT (α) denotes the linear and nonlinear term respectively such that equation im-
plies:

LT (α) +NT (α) = κ(τ) τ ∈ λ

We can construct a Homotopy so that

H(f, p) = (1− p)[LT (f)− LT (ω0)] + p[∆(f)− κ(τ)] = 0

Where p is an embedding parameter which can undergo a deformation process of changing from
[0, 1]. Equation the below equation is further simplified to obtain:

H(f, p) = LT (f)− LT (α0) + p[LT (α0)] + p[NT (α0)− κ(τ)] = 0

as equation p→ 1 yields:
H(f, 0) = LT (f)− LT (α0) = 0
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And when p→ 1 yields:
H(f, 1) = ∆(f)− κ(τ) = 0

We can naturally assume the solution as a power series such that

f(t) = f0(t) + pf1(t) + p2f2(t)+·n fn(t)

Evaluating the above equations, and comparing coefficients of equal powers of p.The values of
f0(t), f1(t), f2(t) are obtained by solving the resulting ordinary differential equations. Thus, the ap-
proximate solution is obtained as:

f(t) = lim
p→1

fn(t) = f1(t) + f2(t) + f3(t) + ·

To conduct numerical simulation on the mathematical model, we create the following correctional
scheme for the model equation.

0 = (1− p)dS
dt

+ p

(
Λ− βSI − (τ + ω)S + TB − µS

)

0 = (1− p)dE
dt

+ p

(
βSI − (c+ η + µ)E

)

0 = (1− p)dI
dt

+ p

(
τS + (c+ η)E − (ε+ δ + r + µ)I

)

0 = (1− p)dR
dt

+ p

(
ωS + (r + ε)I − µR

)

0 = (1− p)dB
dt

= p

(
− (T + µ)B

)
Simplifying the preceding equation yields:

dS

dt
= p

(
Λ− βSI − (τ + ω)S + TB − µS

)
dE

dt
= p

(
βSI − (c+ η + µ)E

)
dI

dt
= p

(
τS + (c+ η)E − (ε+ δ + r + µ)I

)
dR

dt
= p

(
ωS + (r + ε)I − µR

)
dB

dt
= p

(
− (T + µ)B

)
The approximate solution of (4.66) can be assumed as:

S(t) = s0(t) + ps1(t) + p2s2(t) + . . .+ pnsn(t)

E(t) = e0(t) + pe1(t) + p2e2(t) + . . .+ pnen(t)

I(t) = i0(t) + pi1(t) + p2i2(t) + . . .+ pnin(t)

R(t) = r0(t) + pr1(t) + p2r2(t) + . . .+ pnrn(t)

B(t) = b0(t) + pb1(t) + p2b2(t) + . . .+ pnbn(t)


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Evaluating and using the comparing coefficient of pn

p0 : s∗(t) = 0, e∗(t) = 0, i∗(t) = 0, r∗(t) = 0, b∗(t) = 0.

Solving this respectively yields

s0(t) = s0, e0(t) = e0, i0(t) = i0, r0(t) = r0, b0(t) = b0

Solving the system yields:

S1(t) =

(
(1− C)B − (βs0i0)

α(s0 + i0)
− µs0 + ξr0

)
t

E1(t) =

(
(βs0i0)

α(s0 + i0)
− (δ + σ + µ)e0

)
t

I1(t) =

(
σe0 − (γ + µκ)i0

)
t

R1(t) = p

(
γi0 + δe0 + CB − (ξ + µ)r0

)
t

Following the iterative scheme, two more iterations are computed and the approximate results are
evaluated Such that:

S(t) =
4∑

n=0

sn(t), E(t) =
4∑

n=0

en(t), I(t) =
4∑

n=0

in(t), R(t) =
4∑

n=0

rn(t)

The approximate results of each class are evaluated using their respective baseline values in Table 1.
We also suggest the following population data set as initial values given byN = 7000, s0 = 4500, e0 =
2050, i0 = 142, r0 = 306, b0 = 2, ω = 0.2102, η = 0.2317, τ = 0.31, δ = 0.2, ε = 0.0115, µ = 0.01, c =
0.31, r = 0.0185.Thus we obtain the following series of results embedding the parameters whose
influence on the dynamics of tuberculosis transmission are to be analyzed.

s(t) = 1000 +
{
65.26869000 = 1.3362000α− 1362.924000α2 − 37.68c

}
t+{

− 8.99856418α2 + 5499.838828α4 + 152.0510083α2c− 0.0997088160αc

+3333.926349 + 45.98509816c− 3.288025569α
}
t2

2 −
{
11.30828286α2c2 − 66.76103861α2

−0.003719829888αc2 + 40645.08576α4 + 935.98111186α2c+ 56.12092345c

−5.923814565α+ 302.0838612 + 36988.74452α6 − 84.74264814α
}
t3

6


e(t) = 30 +

{
− 45.6259000 + 1362.924999α2 − 1.336200000α

}
t

−
{
69.3893736738− 8.9937246462α3 + 5499.85264526α4 + 152.0510083α2c− 0.997088160αc

+5378.9942632c+ 0.000049369c− 5.2993264526α
}
t2

2 +
{
11.39847747573α2 − 80.284635626α3

−105.5368264253− 0.00327426236247α3c+ 0.00371362646αc− 105.5223642563
+488942646α4c+ 1127236.2534α5c3 +−1.832655321c+ 16.318372673α6c40.000264626α4c2

−164264.42663α3c3

−84.74264814α5
}
t3

6


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i(t) = 20− 50.40320t−
{
127.0391180 + 0.681642000α2 − 0.000668α

}
t2

2

−
{
− 0.004499362535237α3 + 320.2193625cα+ 2.7499236426237α2c2 − 0.07636235457α2c4

+427466.2635α4c2 + 0.37628636623α4c4 − 0.003523556αc2 − 0.5357235α5 − 1826.725α2c6

+2.3545267× 10−8c− 0.004330716805α
}


r(t) = 40 + (46.18360 + 37.68c)t−{
250.8099123 + 45.9850488c− 2044.386000cα2 + 2.004300000α

}
t2

2{
13.49785413α5 − 8249.759899α4 + 727.7734324− 228.0765125α2c+ 0.1495632240αc

−10561.77617α2 + 56.12053936c+ 10.38388802α

}
t3

6


b(t) = 20− (0.272635c)t−

{
4.723633 + 0.2331cα3 + 1.833.6c+ 2..923663α2

}
t2

4

}

Figure 4.2: Effect of environmental
cleanliness on the exposed Population

Figure 4.3: Adverse effect of antibiotics
on the infected Population

Figure 4.4: Effect of water treatment in
the control of cholera transmission in
the recovered population

Figure 4.5: Educational program as a
control measure on the spread of cholera
on the susceptible population

5. Result and interpretation of the graphs

It is obtained that figure 4.2: that environmental cleanliness is a prominent tool in reducing the spread
of cholera to the vulnerable population and figure 4.3: Depicts the effect of antibiotics on the infected
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population as these bring about a decline in the outbreak of cholera. Figure 4.4: Shows that treatment
of water in this region will bring about a drastic measure to the control of cholera as the level of the
spread reduces in the population while figure 4.5: The level of educational program sensitization on
the set of vulnerable populations reduces as it brings about a rapid spread in cholera outbreak and
vice versa.

6. Conclusion

The integration of mathematical modeling with comprehensive control strategies has been instru-
mental in mitigating cholera spread in remote Nigerian areas during the dry season. Incorporating
educational programs, antibiotics, water treatment, and environmental cleanliness into the model
has led to significant progress. These initiatives have raised awareness, enabled prompt treatment,
ensured access to clean water, and improved sanitation, collectively reducing the impact of cholera
outbreaks. Continued collaboration and targeted interventions are crucial for sustaining these efforts
and enhancing resilience against cholera in vulnerable populations.

7. Recommendations

This research underscores the critical need for targeted interventions to address cholera outbreaks
in remote areas of Nigeria during dry seasons. Based on the findings, it is recommended to imple-
ment enhanced water treatment infrastructure, promote sustainable farming practices, and conduct
community-specific educational programs. Additionally, policymakers, health practitioners should
collaborate with local communities to develop and implement contextually relevant preventive mea-
sures. This comprehensive approach will contribute significantly to mitigating cholera spread and
building resilience in vulnerable regions.
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