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Abstract:
This research explore the use of Shifted Legendre Basis functions for the numerical solution of a spe-
cific class of integro-differential equations. These equations are known for their analytical complexity,
making it challenging to derive exact solutions. To address this, we employ an approximate method
using Legendre polynomials as basis functions, which provides an efficient approach to finding so-
lutions for these complex problems. The proposed method is computationally efficient, requiring
minimal computational resources and storage. The results obtained demonstrate strong agreement
with existing solutions found in the literature, validating the accuracy and effectiveness of the ap-
proach. This study highlights the potential of Shifted Legendre Basis functions in solving challeng-
ing integro-differential equations, offering a reliable alternative to more computationally intensive
methods.

Keywords: Shifted Legendre Basis functions, Integro-differential Equations, Numerical Solution,
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1. Introduction

Modeling real-world phenomena often leads to the formulation of complex functional equations,
including Ordinary Differential Equations (ODEs), Partial Differential Equations (PDEs), Integral
Equations, and Integro-Differential Equations (IDEs) by [1]. Among these, Integro-Differential Equa-
tions uniquely combine both differential and integral terms, making them a powerful tool in var-
ious scientific and engineering fields such as physics, biology, economics, and engineering. These
equations are integral to understanding and modeling intricate dynamics and behaviors observed in
natural and engineered systems [2, 3]. Despite their versatility, Integro-Differential Equations pose
significant challenges in both analytical and numerical solutions due to their inherent complexity.
Analytical methods, while providing deep insights into the underlying structures of these equations,
often become infeasible for real-world problems due to the non-linearity and high-dimensional na-
ture of many systems [4]. This has led to an increased focus on developing efficient numerical meth-
ods that can approximate solutions with high accuracy and computational efficiency. To investigate

© Babalola et al.

https://doi.org/10.35508/jd.v7i1.18137
christianaolutola442@gmail.com


Babalola et al.

the numerical solution of a specific class of linear Integro-Differential Equations using Shifted Leg-
endre Basis functions. Legendre polynomials, known for their orthogonal properties, are well-suited
for constructing approximate solutions to differential equations in [5]. By shifting these basis func-
tions, we aim to enhance their applicability in solving linear IDEs, particularly through collocation
techniques [6]. The study emphasizes the potential of this method in providing accurate and compu-
tationally efficient solutions, thereby addressing the limitations of traditional analytical approaches.
Hence, primary challenge addressed in this study is to evaluate the effectiveness of Legendre poly-
nomial functions, specifically Shifted Legendre Basis functions, in solving a class of linear Integro-
Differential Equations [7]. The focus is on implementing and analyzing collocation techniques, which
are pivotal in reducing the computational complexity while maintaining high accuracy in the solu-
tions [8]. The aim of this study is to develop and apply a systematic and improved numerical so-
lution for linear Integro-Differential Equations by leveraging modified Legendre Basis functions. To
explore and study various methods for solving linear Integro-Differential Equations, with an empha-
sis on the utility of Legendre Basis functions [9]. The analysis of the effectiveness of both traditional
and modified solution methods, particularly focusing on accuracy, stability, and convergence. The
accuracy of the numerical solutions against exact or benchmark solutions, thereby validating the
proposed approach, to interpret and discuss the results, highlighting the implications of the findings
for broader applications in science and engineering [10]. The successful application of Shifted Leg-
endre Basis functions to solve linear Integro-Differential Equations holds significant potential across
various scientific and engineering domains. Improved accuracy and reduced computational costs in
numerical solutions can lead to a deeper understanding of complex systems, enabling the design of
more robust engineering solutions and contributing to advancements in scientific research in [11].
As this study progresses, it is expected to illuminate the broader applicability of these modified ba-
sis functions and inspire further research into specialized numerical techniques for solving specific
classes of differential and integral equations in [12–14]. By providing a more efficient tool for tackling
these challenging equations, this research could pave the way for innovations in fields as diverse as
population dynamics, chemical kinetics, and financial modeling [15].

2. Mathematical Formulation

Problem Considered

Legendre polynomial are usually used as polynomial basis function to approximate the solution of
integro differential equation such as Linear an non linear fredholm, Voltera and fredholm - Voltera
integro differential equation . The general form of the equation are

yn(x) =
n∑

q=0

pn(x)y
n(x) = f(x) + λ

∫ b

a
k(x, t)y(t)dt (2.1)

yn(x) =
n∑

q=0

pr(x)y
∗(x) = f(x) + λ

∫ b

a
k(x, t)y(t)dt (2.2)

An unknown function varies with one or more variables, and a differential equation describes the
relationship between this function and its rate of change, modeling dynamic systems across various
fields. A differential equation has the following generic form

F (x, y, y′, y′′, . . . , y(n)) = 0 (2.3)

In this case, the unknown function is called y, the independent variable is called x, and the first,
second, and nth derivatives of y with respect to x are represented by the variables y′, y′′, y′′′, . . . , and
y(n) respectively. These derivatives are related by the function F .
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2.1. Integral Equation

An integral equation involves an unknown function under integral signs, modeling phenomena
across scientific fields.

The general form of a linear integral equation is given by:

u(x) = f(x) + Λ

∫ h(x)

g(x)
K(x, t)u(t)dt = f(x) (2.4)

Here, u(t) is the unknown function, K(x, t) is a given kernel function, and f(x) is a known function.
Integral equations relate a function to its integral, classified as Fredholm or Volterra, and solved using
analytical or numerical methods.

2.2. Linear and Non Linear Differential Equation

Differential equations are categorized as linear or nonlinear based on whether the unknown function
and its derivatives appear linearly or nonlinearly within the equation.

an(x)
dny

dxn
+ an−1(x)

dn−1

dxn−1
+ ...+ a1(x)

dy

dx
+ a0(x)y = g(x) (2.5)

or other nonlinear combinations. Example of a nonlinear Ordinary differential equations: dy/dx =
ky(1− y), where k is a constant. Linear differential equations often allow analytical solutions, while
nonlinear equations typically require numerical methods and exhibit more complex system behav-
iors.

2.3. Homogeneous Differential Equation

Homogeneous Ordinary Differential Equation (ODE):
An ordinary differential equation is considered homogeneous if the sum of any two solutions is

also a solution. In the case of a linear ODE, it is typically written in the form:

an(x)
dny

dxn
+ an−1(x)

dn−1

dxn−1
+ ...+ a1(x)

dy

dx
+ a0(x)y = g(x) (2.6)

Here, y is the unknown function, x is the independent variable, and (x) are coefficients. The term
"homogeneous" indicates that the right-hand side is zero. Homogeneous Partial Differential Equation
(PDE):

In the context of partial differential equations, a homogeneous equation is one where the sum of
any two solutions is also a solution. For example, a linear homogeneous second-order PDE in two
variables u(x, y) may look like:

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂y
+ fu (2.7)

a, b, c, d, e, f are constants, and the right-hand side is zero.

3. Legendre Polynomial as a Basis Function

A Synopsis of Legendre Polynomial Basis Functions: A collection of orthogonal polynomials known
as legendre polynomial basis functions are essential to many areas of mathematics and physics. These
polynomials, which bear the name Adrien-Marie Legendre after the French mathematician, are used
in many different domains such as quantum mechanics, signal processing, and numerical analysis.
They originate as solutions to Legendre’s differential equation.
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Orthogonality and Definition

Legendre polynomials, represented by the symbol Pn(x), are orthogonal basis sets that are defined
on the interval [−1, 1]. One important characteristic of Legendre polynomials that makes numerous
mathematical operations and computations simpler is their orthogonality trait. The orthogonality
can be stated mathematically as:

Pm(x) · Pn(x)

∫ 1

−1
dx =

2

2n+ 1
δmn (3.8)

where the Kronecker delta is δmn and is equal to 1. The Legendre polynomials, denoted by Pn(x), are
defined on the interval where δmn is the Kronecker delta, which equals 1 when m = n and 0 otherwise.
The first few Legendre polynomials are according to Handbook of Mathematical Functions. Dover
Publications and Methods of Theoretical Physics. McGraw-Hill Education.
The recurrence relation for Legendre polynomials is given by:

P0(x) = 1

P1(x) = x

P2(x) =
1

2
(3x2 − 1)

P4(x) =
1

8
(35x4 − 30x2 + 3

P5(x) =
1

8
(63x5 − 70x3 + 15)

P6(x) =
1

16
(231x6 − 315x4 + 105x2 − 5)

P7(x) =
1

16
(429x7 − 693x5 + 315x3 − 35x

P8(x) =
1

128
(6435x8 − 12012x6 + 6930x4 − 1260x2 + 35)

P9(x) =
1

128
(12155x9 − 25740x7 + 18618x5 − 4620x3+)

Legendre polynomials are essential in solving spherical symmetry problems, especially in physics
and engineering, related to spherical harmonics. Legendre’s Differential Equation is of the form

(1− x2y′′ − 2xy′ + n(n+ 1)y = 1) (3.9)

and is called Legendre’s differential equation where n is a non-negative integer. This equation can
also be put in the following form:

y

dx
(1− x2)

dy

dx
+ n(n+ 1)y = 1 (3.10)

y =

∞∑
m=0

Cmxk+m, Co ̸= 0 (3.11)

y′ =
∞∑

m=0

Cm(k +m)xk+m−1 (3.12)

y′′ =
∞∑

m=0

Cm(k +m)(k +m− 1)xk+m−2 (3.13)
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Putting the above values of y, y′ and y” in (2.5), we have

∞∑
m=0

Cm(k +m)(k +m− 1)xk+m−2 − x2y′′ =
∞∑

m=0

Cm(k +m)(k +m− 1)xk+m−2

−2x

∞∑
m=0

Cm(k +m)xk+m−1 + n(n+ 1)

∞∑
m=0

Cmxk+m

= 0cok
k−1

= 0 or k(k − 1) = 0, [co ̸= 0]

which gives two indicial roots k = k1 = 1 and k = k2 = 0. Note that the roots of indicial equation
are unequal and differ by an integer. Now, to get the recurrence relation, we equate to zero, the
coefficient of xk−m+2 in equation (1.11 ), Thus, we have

Cm(k +m)(k +m− 1)− Cm − 1(k = m− 2 +−)(k +m− 2 + n+ 1) = 0

or

Cm =
(k +m− 2− n)(k +m− 1 + n)

(k +m)(k +m− 1)
Cm − 2

Then, equating to zero , the co efficient of xk−1 in (13) , we get

Co(k + 1)k = 0

it remains valid for k=0: for the explicit polynomial solutions of Legendre Ordinary Differential
equation with decreasing power than we have

Pn(x) =
1

2n

n/2∑
k=0

(−1)k(n, k)()2n− 2k, n)xn − 2k. (3.14)

Here are some properties from Legendre polynomials

Lemma I

Pn(x) =
1

2nn!

dn

dxn
[(x2)− 1)n]] for n = 0 , since 0! = 1 , it yields

P0(x) = 1
d

dx
[(1− x2)y′] + n(n+ 1)y = 0 (3.15)

for any integer n > 0.

(x2 − 1)
d

dx
(x2 − 1)n = 2nx(x2 − 1)2 (3.16)
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By computing the derivatives and moving the product from the right hand side of the product to the
left (n+ 1)th derivatives. It is obtained that

dn + 1

dxn + 1
[(x2 − 1)

d

dx
(x2 − 1)− 2nx(x2 − 1)n] = n(n+ 1)

dn

dxn
(x2 − 1)

+2(n+ 1)x
dn + 1

dxn + 1
(x2 − 1)n + (x2 − 1)

dn + 2

dxn + 2
(x2 − 1)n − 2n(n+ 1)

dn

dxn
(x2 + 1)− 2nx

dn + 1

dxn + 1
= −n(n+ 1)

dn

dxn
(x2 − 1) + 2x

d(n+ 1)

dx(n+ 1)

(x2 − 1)2 + (x2 − 1) · d(n+ 1)

dx(n+ 2)

d

dx
[(1− x2)

d

dx
(
dn

dxn
)(x2 − 1)]

n(n+ 1)
d(n)

dxn
(x2 − 1n)

For Pn(x) , for example

Pn(x) =

n∑
k=0

Curiously , Legendre polynomials form set of orthogonal contimuous functions over[−1, 1]

Lemma II

Pn(x)of a distinct degrees are orthogonal over [-1,1] , with weighting function w(x) = 1. It is proved
that the orthogonality of two continous functions fm(x) and fn(x) over domain [a, b] is equivalent to
the invalidity of the inner product fm/fn :=

∫ b
a fm(x)fn(x)w(x)dx. Taking w(x) = 1. To show that∫ +1

−1
pm(x) · pn(x)dx = 0 ∀m ̸= n (3.17)

Since all Pn(x) satisfy Legendre’s ODE we have

[(1− x2)]p′n(x)]
′ + n(n+ 1)Pn = 0

and [(1− x2)]p′m(x)]′ +m(m+ 1)Pm = 0[(1− x2)]p′n(x)]
′ + n(n+ 1)Pn = 0

and [(1− x2)]p′m(x)]′ +m(m+ 1)Pm = 0

By multiplying and subtracting the above expression will result.

(1− x2)(P ′
mP ′

n − PMP ′
N )] + (m− n)(m+ n+ 1)PmPn = 0

Mainly , the integration of both sides over the domain | − 1, 1]∫ +1

−1

d

dx
[(1− x2)(P ′

mPn − PmP ′
n)]dx+ (m− n+ 1)

∫ +1

−1
pmpndx = 0

and this always as (m−n)(m+n+1)
∫ +1
−1 pmpndx = 0 ∀ non negatives values of m ̸= n. Where Pm(x)

and Pn(x) are said to be orthogonal in the interval 0 ≤ x ≤ 1.
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3.1. Shifted Legendre Polynomial

Shifted Legendre polynomials, represented by P
(α)
n (x), are an extension of classical Legendre poly-

nomials incorporating a shift parameter α. They are orthogonal over non-standard intervals, vital for
diverse mathematical modeling applications.

L ∗k +1(x) =
(2k + 1)(2x− 1)

k + 1
L ∗k (x)−

k

(k + 1)
L ∗ (k − 1)(x) (3.18)

where

L ∗0 (x) = 1

L ∗1 (x) = 2x− 1

L ∗2 (x) = 6x2 − 6x+ 1

L ∗3 (x) = 20x3 − 30x2 + 12x+ 1

L ∗4 (x) = 70x4 − 140x3 + 90x2 − 20x+ 1

L ∗5 (x) = 252x5 − 630x4 + 560x3 − 210x2 + 30x− 1

L ∗6 (x) = 924x6 − 2772x5 + 3150x4 − 1680x3 + 420x2 − 42x+ 1

L ∗7 (x) = 3432x7 − 12012x6 + 1663x5 − 11550x4 + 4200x3 − 756x2 + 56x− 1

L ∗8 (x) = 12870x8 − 51480x7 + 84084x6 − 72072x5 + 34650x4 − 9240x3 + 1260x2 − 72x+ 1

4. Collocation algorithm

Here, standard Collocation Method is used for solving one Dimensional Ordinary Integro Differential
Equation using the Shifted Legendre Polynomial are basis function Consider the ordinary Integro
Differential Equation of the general form

Um(x) + f(x)U(x) + λ

∫
a−b(x)w(x, t)U(t)dt = g(t) (4.19)

and the assumed solution of the form

UN (x) =

N∑
i=0

aiϕi(x) (4.20)

For the purpose of discussion the assumed approximate solution is of the form

UΛ(x) =
N∑
i=0

aiϕi(x) +HN (x) (4.21)

where ai are constant to be determined, ϕ(x) are Legendre polynomial, HN (x) are the perturbed
terms. Substitute equation( 3.3) into equation (3.1) to obtain as follows

Ũm
N (x) + f(x)ŨN (x) + λ

∫
ab(x)w(x, t)UN (t)dt = g(x) +HN (x) (4.22)
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where ŨN is nth derivative of UN (x0).[∑N
i=0 aiϕi(x) +HN (x)

]n
+ f(x)

[∑N
i=0 aiϕi(x) +HN (x)

]
+ λ

∫ b
a w(x, t)

[∑N
i=0 aiϕi(t)

]
dt = g(x)∑N

k=0 aiϕi(x) +HN (x) = Ū(x) = a0ϕ0(x) + a1ϕ1(x) + a2ϕ2(x) + a3ϕ3(x) + . . .+ aNϕN (x) +HN (x)

ū′(x) = a0ϕ
′
0(x) + a1ϕ

′
1(x) + a2ϕ

′
2(x) + a3ϕ

′
3(x)...aNϕ′

N (x) +H ′
N (x)

ū′′(x) = a0ϕ
′′
0(x) + a1ϕ

′′
1(x)a2ϕ

′′
2(x) + a3ϕ

′′
3(x)...aNϕ′′

N (x) +H ′′
N (x)

...
Ūm
N (t) = aoϕ

n
0 (x) + a1ϕ

n
1 (x) + a2ϕ

n
2 (x) + a3ϕ

n
3 (x) + ...+ aNϕm

N (x) +Hn
N (x)

Ū(t) = a0ϕ0(t) + a1ϕ1(t) + a2ϕ2(t) + a3ϕ3(t) + . . .+ aNϕN (t) +HN (t)

substitute 3.6, 3.7,and 3.8 into equation 3.4 to obtain as follows;

a0ϕ
m
0 (x) + a1ϕ

m
1 (x) + a2ϕ2(x)

m +...+ anϕ
m
N (x) +HN (x) + f(x0)[a0ϕ0(x) + a1ϕ1(x) + a2ϕ2(x)

+...+ aNϕN (x0 +HN (x))] + λ

∫ b(x)

a
w(x, t)[a0ϕ0(t) + a1ϕ1(x)

+ a2ϕ2(t) + ...+ aNϕN (x0) +HN (x)]dt

= g(x) +HN (x) (4.23)

Further simplification of equation 3.11 gives[
ϕm
0 (x) + ϕ0(x)f(x) + λ

∫ b
a (x)w(x, t)ϕ0(t)dt

]
a0 +

[
ϕm
1 (x) + ϕ1(x)f(x) + λ

∫ b
a (x)w(x, t)ϕ1(t)dt

]
a1+[

ϕm
2 (x) + ϕ2(x)f(x) + λ

∫ b
a (x)w(x, t)ϕ2(t)dt

]
a2 + . . .+

[
ϕm
N (x) + ϕm

Nf(x) + λ
∫ b
a (x)w(x, t)ϕ

M
N (t)dt

]
aN

+Hm
N (X) + f(x)HN (x) + λ

∫ b
a (x)w(x, t)HN (t)dt = g(x) +HN (x) .(4.24)

[
ϕm
0 (x) + ϕ0(x)f(x) + λ

∫ b
a (x)w(x, t)ϕ0(t)dt

]
a0 +

[
ϕm
1 (x) + ϕ1(x)f(x) + λ

∫ b
a (x)w(x, t)ϕ1(t)dt

]
a1+[

ϕm
2 (x) + ϕ2(x)f(x) + λ

∫ b
a (x)w(x, t)ϕ2(t)dt

]
a2 + . . .+

[
ϕm
N (x) + ϕN (x)f(x) + λ

∫ b
a (x)w(x, t)ϕN (t)dt

]
aN

+HN (x)m(x) + f(x)HN (x) + λ
∫ b
a (x)w(x, t)HN (t)dt = g(x) +HN (x)

Hm
N (x) =

∑m
p=1 τpLN−P+1 (4.25)

n represent order of Integro-Differential Equation.

HN (x) = τ1LN (x) + τ2LN−1(x) + τ3LN−2(x) + . . .+ τnLN−m+1(x)

H ′
N (x) = τ1L

′
N (x) + τ2L

′
N − 1(x) + τ3L

′
N−2(x) + ...τnL

′
N−m+1(x)

Hm
N (x) = τ1L

m
N (x) + τ2L

m
N−1(x) + τ3L

m
N−2(x) + . . .+ τnL

m
N−m+1(x)

HN (t) = τ1LN (t) + τ2LN−1 + τ3LN−2(t) + . . .+ τnLN−m+1 (4.26)
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substitute equation, 3.14, 3.15, and 3.17 into equation 3.13 to obtain equation 3.18[
ϕn
0 (x) + ϕ0(x)f(x) + λ

∫ b
a (x)w(x, t)ϕ0(t)dt

]
a0 +

[
ϕn
1 (x) + ϕ1(x)f(x) + λ

∫ b
a (x)w(x, t)ϕ1(t)dt

]
a1+[

ϕn
2 (x) + ϕ2(x)f(x) + λ

∫ b
a (x)w(x, t)ϕ2(t)dt

]
a2 + . . .+

[
ϕm
N (x) + ϕN (x)f(x) + λ

∫ b
a (x)w(x, t)ϕN (t)dt

]
aN

+τ1L
n
N (x) + τ2L

n
N−1(x) + . . .+ τLn

N−m+1 + f(x)

[
τ1LN (x) + τ2LN−1(x) + τnLN−m+1(x)

]
+ λ

∫ b
a (x)w(x, t)[

τ1LN (t) + τ2LN−1(t) + . . .+ τnLN−m+1(x)

]
dt = g(x) + τ1LN (x) + τ2LN−1(x) + . . .+ τnLN−m+1 (4.27)

Collocating equation (3.18)

xi = a+
a+ (b− a)i

N
(4.28)

at point and N is the degree of the approximant used. Hence, it gives rise to [N + 1] algebraic linear
system of equation are then solved using elimination methods to obtain the unknown constants at
i > 0 which are then substituted into equation (3) to obtain the appropriate solution

4.1. Discussion of Results

This method analyses the use of Shifted Legendre Basis Functions in numerically solving linear
integro-differential equations. It covers aspects like numerical accuracy, flexibility, comparability
with alternative techniques, stability, computational efficiency, usefulness, and implications for fur-
ther study. The work examines numerical correctness and convergence behavior by comparing cal-
culated results with known analytical solutions and fine-tuning the spatial grid. Findings show that
Shifted Legendre Basis Functions are effective in solving linear integro-differential equations

4.2. Example 1

Consider the second order linear fredholm integro-differential equation (Daraina)

y′′(x) = ex − x+

∫ 1

0
xty(t)dt y(0) = 1, y′(0) = 1

with exact solution is y(x) = ex

Solution:

Let UN (x) =
∑N

r=0 aiϕi(x) and the perturbed assumed solution be

UN (x) =

N∑
r=0

aiϕi(x) +HN (x)

where

HN (x) =

m∑
p=1

τpLN−P+1
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∑N
k=0 aiϕi(x) +HN (x) = Ū(x) = a0ϕ0(x) + a1ϕ1(x) + a2ϕ2(x) + a3ϕ3(x) + . . .+ aNϕN (x) +HN (x)

ū′(x) = a0ϕ
′
0(x) + a1ϕ

′
1(x) + a2ϕ

′
2(x) + a3ϕ

′
3(x)...aNϕ′

N (x) +H ′
N (x)

ū′′(x) = a0ϕ
′′
0(x) + a1ϕ

′′
1(x)a2ϕ

′′
2(x) + a3ϕ

′′
3(x)...aNϕ′′

N (x) +H ′′
N (x)

...
Ūm
N (t) = aoϕ

n
0 (x) + a1ϕ

n
1 (x) + a2ϕ

n
2 (x) + a3ϕ

n
3 (x) + ...+ aNϕm

N (x) +Hn
N (x)

Ū(t) = a0ϕ0(t) + a1ϕ1(t) + a2ϕ2(t) + a3ϕ3(t) + . . .+ aNϕN (t) +HN (t)

Consider for case N = 5

y(x) = y4(x) =

4∑
r=0

arLr(x) = a0 + a1(2x− 1) + a2(6x
2 − 6x+ 1) + a3(20x

3 − 30x2 + 12x+ 1)

+a4(70x
4 − 140x3 + 90x2 − 20x+ 1) + a5(252x

5 − 630x4 + 560x3 − 210x2 + 30x− 1)

Substitute equations 4.3, 4.4, 4.5, into equation 4.1 we obtain as follows:

2a1 + (12x− 6)a2 + (60x2 − 60x+ 12)a3 + (280x3 − 420x2 + 180x− 20)a4 + (1260x4 − 2520x3

+1680x2 + 420x+ 30)a5 + (1260x4 − 2520x3 + 1680x2 + 420x+ 30)τ1 − x

(
a0

t2

2
+ a1(

2t3

3
− t2

2
)

+a2(
6t4

4
− t3

3
+

t2

2
) + a3(

20t5

5
− 30t4

4
+

12t3

3
− t2

2
) + a4(

70t6

6

140t5

5
+

90t4

4
− 20t3

3
+

t2

2
)

+a5(
252t7

7
− 630t6

6
+

560t5

5
− 210t4

4
+

30t3

3
− t2

2
)τ1]

)
= ex−x

Now applying the initial condition U5(0) = 1 to get

a1 + a2 + a3 + a4 + a5 = 1

Differentiating equation 4.10 and applying the initial condition U ′
5 = −3 to get

2a1 − 6a2 + 12a3 − 20a4 = 1

This equation (4.9) is collocating at point x = xi, where xi = −1 + 2i
4 ; i = 1, 2, 3, 4, 5. and other

simplification gives

−0.1068769702e−1.− 0.3018677642e−2τ2 − 0.5218784e−3τ1 + 0.3208768098e−2a4

−0.534566876293e−2a3 + 0.7481733744e−2a2 − 0.9215030710e−2a1 + 0.1018571084e−1a0 = 0

Solving simultaneously and substituting the values of the constants into the trial solution gives: U5 =
1.0000076 + 0.999709x+ 0.50477x2 + 0.1539x3 + 0.7012e−1x4

The numerical result obtained from example 2 is depicted below
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Table 4.1: Comparison of numerical solution and Exact solution with Daraina et al

(x, t) Exact Solution Approximate Absolute Error Daraina et al.(2016)
0.0 1.0000000000 1.0000098000 9.8000e−06 0.00000000e+0

0.1 1.1051709180 1.1051662120 4.7060e−06 1.66666667e−03

0.2 1.2214027580 1.2214015920 1.1660e−06 6.09388620e−03

0.3 1.3498588080 1.3498557720 3.0360e−06 1.32017875e−02

0.4 1.4918246980 1.4918128720 1.1826e−05 2.29140636e02

0.5 1.6487212710 1.6487013000 1.9971e−05 3.51578404e−02

0.6 1.8221188000 1.8220937520 2.5048e−05 6.69648304e−02

0.8 2.0137527070 2.0137072120 4.5495e−05 8.63983845e−02

0.9 2.2255409280 2.2254029520 1.3798e−04 1.08103910e−01

1.0 2.4596031110 2.4591865320 4.1658e−04 1.32023989e−01

Figure 4.1: Comparison between result of exact and approximate solution for example 1

4.3. Example 2

Consider the third order integro differential equation

y′′′(x) = sinx− x−
∫ 1

0
xty′(t)dt y(0) = 1, y(1) = 0, y′(0) = −1

with the exact solution y′(x) = cosx

Solution:

Let UN (x) =
∑N

r=0 aiϕi(x) and the perturbed assumed solution be

UN (x) =
N∑
r=0

aiϕi(x) +HN (x)
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where HN (x) =
∑m

p=1 τpLN−P+1∑N
k=0 aiϕi(x) +HN (x) = Ū(x) = a0ϕ0(x) + a1ϕ1(x) + a2ϕ2(x) + a3ϕ3(x) + . . .+ aNϕN (x) +HN (x)

ū′(x) = a0ϕ
′
0(x) + a1ϕ

′
1(x) + a2ϕ

′
2(x) + a3ϕ

′
3(x)...aNϕ′

N (x) +H ′
N (x)

ū′′(x) = a0ϕ
′′
0(x) + a1ϕ

′′
1(x)a2ϕ

′′
2(x) + a3ϕ

′′
3(x)...aNϕ′′

N (x) +H ′′
N (x)

...
Ūm
N (t) = aoϕ

n
0 (x) + a1ϕ

n
1 (x) + a2ϕ

n
2 (x) + a3ϕ

n
3 (x) + ...+ aNϕm

N (x) +Hn
N (x)

Ū(t) = a0ϕ0(t) + a1ϕ1(t) + a2ϕ2(t) + a3ϕ3(t) + . . .+ aNϕN (t) +HN (t)

Consider for case N = 5

y(x) = y4(x) =
∑
r

−04arLr(x) = a0 + a1(2x− 1) + a2(6x
2 − 6x+ 1) + a3(20x

3 − 30x2 + 12x+ 1)

+a4(70x
4 − 140x3 + 90x2 − 20x+ 1) + a5(252x

5 − 630x4 + 560x3 − 210x2 + 30x− 1)

substitute equations 4.3, 4.4, 4.5, into equation 4.1 we obtain as follows :

2a1 + (12x− 6)a2 + (60x2 − 60x+ 12)a3 + (280x3 − 420x2 + 180x− 20)a4 + (1260x4 − 2520x3

+1680x2 + 420x+ 30)a5 + (1260x4 − 2520x3 + 1680x2 + 420x+ 30)τ1

−x

∫ 1

0

[
t(a0 + a1(2t− 1) + a2(6t

2 − 6t+ 1) + a3(20t
3 − 30t2 + 12t− 1)

+a4(70x
4 − 140x3 + 90x2 − 20x+ 1) + τ1]dt = ex−x

]

2a1 + (12x− 6)a2 + (60x2 − 60x+ 12)a3 + (280x3 − 420x2 + 180x− 20)a4 + (1260x4 − 2520x3

+1680x2 + 420x+ 30)a5 + (1260x4 − 2520x3 + 1680x2 + 420x+ 30)τ1 − x

[
a0

t2

2
+ a1(

2t3

3
− t2

2
)

+a2(
6t4

4
− t3

3
+

t2

2
) + a3(

20t5

5
− 30t4

4
+

12t3

3
− t2

2
) + a4(

70t6

6

140t5

5
+

90t4

4
− 20t3

3
+

t2

2
)

+a5(
252t7

7
− 630t6

6
+

560t5

5
− 210t4

4
+

30t3

3
− t2

2
)τ1

]
= sinx− x

]
Now applying the initial condition U5(0) = 1 to get

a1 + a2 + a3 + a4 + a5 = 1

Differentiating equation 4.10 and applying the initial condition U ′
5 = −3 to get

2a1 − 6a2 + 12a3 − 20a4 = 1

This equation (4.9) is collocating at point x = xi, where xi = −1 + 2i
4 ; i = 1, 2, 3, 4, 5. and other

simplification gives

−0.1068889702e−1.− 0.3018967642e−2τ2 − 0.52160184e−3τ1 + 0.3203492098e−2a4

−0.5342491293e−2a3 + 0.7481733744e−2a2 − 0.9215030710e−2a1 + 0.1018571084e−1a0 = 0

solving simultaneously and substituting the values of the constants into the trial solution gives:

U5 = 1.0000098 + 0.999608x+ 0.50357x2 + 0.1539x3 + 0.6012e−1x4

The numerical result obtained from example 2 is depicted below
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Table 4.2: Comparison of numerical solution and Exact solution with Daraina et al

(x, t) Exact Solution Approximate Absolute Error Daraina et al.(2016)
0.0 1.00000000 1.00000620 6.2000e−06 0.00000000e+00

0.1 1.21709180 1.217066212 2.5588e−08 1.00118319e−02

0.2 1.43175800 1.43159200 1.1660e−06 2.78651355e−02

0.3 1.39880000 1.39872000 8.0000e−05 5.08730892e−02

0.4 1.49182469 1.49181287 1.1826e−07 7.55356316e−02

0.5 1.64872127 1.64870130 1.9971e−05 9.71888592e−02

0.6 1.82211880 1.82209370 2.5100e−07 1.09551714e−01

0.7 2.13775277 2.13707212 6.8065e−08 1.04133232e−01

0.8 2.22554090 2.22540295 1.3795e−08 1.94512700e−02

0.9 2.46671100 2.46673200 2.1000e−06 1.00034260e−02

1.0 2.77238000 2.77230000 1.0000e−05 1.55147712e−01

Figure 4.2: Comparison between result of exact and approximate solution for example 2

4.4. Example 3

Consider the second order integro-differential equation

u2 = 1 + x+
1

6
x3 +

∫
tu(t), t = 0y(0) = 0, y(1) = 1

y(exact) = 1 + x+ x2

2 + x3

3 + x3

3 + x4

4 Consider the second order linear fredholm integro-differential
equation (Daraina)

y′′(x) = ex − x+

∫ 1

0
xty(t)dt y(0) = 1, y′(0) = 1

with exact solution is y(x) = ex

Solution:

Let UN (x) =
∑N

r=0 aiϕi(x) and the perturbed assumed solution be

UN (x) =
N∑
r=0

aiϕi(x) +HN (x) (4.29)
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where HN (x) =
∑m

p=1 τpLN−P+1∑N
k=0 aiϕi(x) +HN (x) = Ū(x) = a0ϕ0(x) + a1ϕ1(x) + a2ϕ2(x) + a3ϕ3(x) + . . .+ aNϕN (x) +HN (x)

ū′(x) = a0ϕ
′
0(x) + a1ϕ

′
1(x) + a2ϕ

′
2(x) + a3ϕ

′
3(x)...aNϕ′

N (x) +H ′
N (x)

ū′′(x) = a0ϕ
′′
0(x) + a1ϕ

′′
1(x)a2ϕ

′′
2(x) + a3ϕ

′′
3(x)...aNϕ′′

N (x) +H ′′
N (x)

...
Ūm
N (t) = aoϕ

n
0 (x) + a1ϕ

n
1 (x) + a2ϕ

n
2 (x) + a3ϕ

n
3 (x) + ...+ aNϕm

N (x) +Hn
N (x)

Ū(t) = a0ϕ0(t) + a1ϕ1(t) + a2ϕ2(t) + a3ϕ3(t) + . . .+ aNϕN (t) +HN (t)

Consider for case N = 5

y(x) = y4(x) =
∑
r

−04arLr(x) = a0 + a1(2x− 1) + a2(6x
2 − 6x+ 1) + a3(20x

3 − 30x2 + 12x+ 1)

+a4(70x
4 − 140x3 + 90x2 − 20x+ 1) + a5(252x

5 − 630x4 + 560x3 − 210x2 + 30x− 1)

substitute equations 4.3, 4.4, 4.5, into equation 4.1 we obtain as follows :

2a1 + (12x− 6)a2 + (60x2 − 60x+ 12)a3 + (280x3 − 420x2 + 180x− 20)a4 + (1260x4 − 2520x3

+1680x2 + 420x+ 30)a5 + (1260x4 − 2520x3 + 1680x2 + 420x+ 30)τ1 − x

(
a0

t2

2
+ a1(

2t3

3
− t2

2
)

+a2(
6t4

4
− t3

3
+

t2

2
) + a3(

20t5

5
− 30t4

4
+

12t3

3
− t2

2
) + a4(

70t6

6

140t5

5
+

90t4

4
− 20t3

3
+

t2

2
)

+a5(
252t7

7
− 630t6

6
+

560t5

5
− 210t4

4
+

30t3

3
− t2

2
)τ1

)
= ex−x

Now applying the initial condition U5(0) = 1 to get

a1 + a2 + a3 + a4 + a5 = 1

Differentiating equation 4.10 and applying the initial condition U ′
5 = −3 to get

2a1 − 6a2 + 12a3 − 20a4 = 1

This equation (4.9) is collocating at point x = xi, where xi = −1 + 2i
4 ; i = 1, 2, 3, 4, 5. and other

simplification gives

−0.1068889702e−1 − 0.3018967642e−2τ2 − 0.52160184e−3τ1 + 0.3203492098e−2a4

−0.5342491293e−2a3 + 0.7481733744e−2a2 − 0.9215030710e−2a1 + 0.1018571084e−1a0 = 0

solving simultaneously and substituting the values of the constants into the trial solution gives:

U5 = 1.0000098 + 0.999608x+ 0.50357x2 + 0.1539x3 + 0.6012e−1x4

As obtained the results for Example 3 iterations is depicted below
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Table 4.3: Comparison of numerical solution and Exact solution with Daraina et al

(x, t) Exact Solution Approximate Absolute Error Daraina et al.(2016)
0.0 1.0000000000 1.0000160000 1.6000e−05 0.0000e0

0.1 1.1051708340 1.1053313500 1.6052e−04 1.5900e02

0.2 1.2214000000 1.2227436000 1.3436e-03 9.500e02

0.3 1.3498375000 1.3543887500 4.5512e−03 1.9700e1

0.4 1.4917333340 1.5025840000 1.0851e−02 1.4900e1

0.5 1.6484375000 1.6698277500 2.1390e−02 1.4900e1

0.6 1.8214000000 1.8587996000 3.7400e−02 1.9703e1

0.7 2.0121708340 2.0723603500 6.0190e−02 9.5007e2

0.8 2.2224000000 2.3135520000 9.1152e−02 3.5908e1

0.9 2.4538375000 2.5855977500 1.3176e−01 1.5987e1

1.0 2.7083333340 2.8919020000 1.8357e−01 1.0007e−1

Figure 4.3: Comparison between result
of exact and approximate solution for
example 3

Figure 4.4: Comparison between result
of exact and approximate solution for
example 3

From the tabular representation of results, it is observed that the following observations were con-
sidered as factors in variation between numerical solution and exact solution

1. Truncation and Discretization Errors: In numerical methods, continuous functions are repre-
sented by discrete values at specific points. Using basis functions like the shifted Legendre
polynomials involves truncating the series expansion to a finite number of terms. This trunca-
tion introduces a truncation error, as only a finite number of terms approximate the solution.
Moreover, discretizing the IDE can also lead to discretization errors due to the finite represen-
tation of continuous operators.

2. Approximation of Basis Functions: Shifted Legendre polynomials, although effective in many
cases, are still approximations when used in a truncated series. The accuracy of the numerical
solution depends heavily on the degree of the polynomial expansion and the suitability of the
Legendre basis functions for the problem’s specific boundary and initial conditions. For com-
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plex integro-differential equations, the chosen polynomial order might not capture all aspects
of the solution’s behavior, leading to approximation errors.

3. Integration and Differentiation Approximations: Integro-differential equations involve both
integral and differential terms, which may need to be approximated separately. In numerical
solutions, integrals are often approximated by quadrature rules, and differentiation is approx-
imated by finite differences or polynomial-based derivatives. The inherent approximation in
these methods can introduce errors, especially for higher-order derivatives or integrals over
large intervals.

4. Boundary Condition Handling: Numerical methods require enforcing boundary or initial con-
ditions in the context of basis functions. These conditions might not align precisely with the
polynomial basis functions, leading to minor adjustments or approximations that add to the
overall error. This effect is especially notable in boundary layers where solutions may have
steep gradients, as polynomial basis functions struggle to capture such localized behaviors ac-
curately.

5. Computational Precision: Numerical computations are limited by machine precision. Small
round-off errors in arithmetic operations accumulate, particularly in iterative or multi-step
computations. While these errors are typically small, they can become significant in high-
dimensional problems or when the method involves large matrices that amplify round-off er-
rors.

6. Algorithm Convergence: Some algorithms used for numerical solutions of IDEs may converge
slowly or not at all, depending on the initial guess, matrix conditioning, or problem-specific
parameters. Poor convergence behavior can increase errors, as a solution that is not well-
converged will inherently differ from the exact solution.

5. Conclusion

Integro-differential equations, which involve derivatives and integrals of unknown functions, can
be effectively addressed using Legendre polynomials—orthogonal polynomials defined on the in-
terval [−1, 1]. These polynomials allow for the representation of the unknown function as a series
expansion, simplifying the process of manipulation and analysis. The orthogonality of Legendre
polynomials significantly reduces computational complexity, enabling efficient evaluation of inte-
grals and facilitating the derivation of closed-form solutions. In applying Shifted Legendre Basis
Functions to the numerical solution of linear integro differential equations, this method demonstrates
its effectiveness, versatility, and practical utility. The results offer valuable insights into efficient ap-
proximation of solutions. The use of shifted Legendre basis functions offers an effective way to
approximate solutions to linear integro-differential equations with reasonable accuracy, even when
dealing with complex boundary conditions and also flexibility in handling complex equations. This
numerical approach allows for the treatment of both integral and differential components within
integro-differential equations, making it a versatile option for a wide range of Integro-Differential
Equations.

6. Recommendation

In order to employ shifted Legendre basis functions to solve linear integro-differential equations, we
must first analyze Optimize basis function selection, future work could explore adaptive or problem-
specific basis functions that better capture local solution behaviors, especially in regions with steep
gradients or boundary layers and increase computational precision with efficiency as this will bring
about implementing higher-precision arithmetic and improving convergence algorithms could fur-
ther reduce computational errors, particularly for high-dimensional or stiff integro-differential prob-
lems.
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