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Abstract:
This study presents a mathematical analysis of the SVEITR model, which incorporates susceptible,
vaccinated, exposed, infected, treatment, and recovered populations to evaluate the dynamics of
cholera spread. By integrating treatment and vaccination rates into the model, we aim to under-
stand their impact on disease transmission and immunity. Our findings reveal that combining rapid
treatment and vaccination significantly reduces the spread of cholera, highlighting the importance of
these interventions in public health strategies. The model demonstrates that timely and widespread
implementation of vaccination and treatment can effectively control outbreaks and mitigate the dis-
ease’s impact. Through a numerical simulation of Laplace decomposition method the result reveal
that treatment rate reduces the emanation of the disease and vaccination plays a vital role in curbing
aftermath effect of wide-spread of the disease. Hence, the need for robust healthcare policies that
prioritize these measures to achieve substantial progress in managing and eventually eradicating
cholera, particularly in vulnerable regions. The SVEITR model provides a valuable framework for
policymakers and healthcare professionals to devise efficient strategies for cholera control, contribut-
ing to improved public health outcomes.

Keywords: Cholera Control, Treatment Efficacy, Vaccination, Stability Analysis, Laplace Adomian
Decomposition Method

1. Introduction

Cholera, a highly infectious disease caused by the bacterium Vibrio cholerae, which remains a public
health challenge, particularly in regions with inadequate water and sanitation infrastructure. Char-
acterized by severe diarrhea and dehydration, cholera can lead to death within hours if untreated.
The disease primarily spreads through the consumption of contaminated water and food, making
its control closely linked to the quality of water supply, sanitation, and hygiene practices in [1, 2].
Despite advancements in medical science and public health strategies, cholera outbreaks continue
to pose substantial health risks, particularly in developing countries. The focus of contemporary
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cholera research includes treatment efficacy, vaccination, water and environmental cleanliness, re-
gional enlightenment, regular hand washing, proper waste disposal, and public awareness [3]. These
components are critical in developing a comprehensive approach to control and prevent the disease
effectively. Effective treatment of cholera involves prompt rehydration, which can be lifesaving. Oral
rehydration salts (ORS) are the cornerstone of treatment for most patients, while intravenous fluids
are necessary for severe cases. Antibiotics can also reduce the duration of diarrhea and the volume
of rehydration fluids needed. Research into optimizing these treatments is ongoing, aiming to en-
hance their efficacy and accessibility, especially in resource-limited settings by [4–6]. The goal is
to ensure that treatment protocols are both efficient and adaptable to various healthcare infrastruc-
tures, thus reducing mortality and morbidity associated with cholera. Vaccination is a crucial tool
in cholera prevention [7]. Oral cholera vaccines (OCVs) have proven effective in providing immu-
nity and reducing the incidence of the disease as in [8]. Integrating vaccination into public health
strategies, particularly in high-risk areas, can prevent outbreaks and provide long-term protection.
Ongoing research focuses on improving the efficacy and duration of vaccine-induced immunity, as
well as logistics to enhance vaccine distribution and administration in endemic regions [9–11]. The
success of vaccination campaigns depends on the timely and widespread coverage, particularly be-
fore and during outbreaks [12]. Clean water and proper sanitation are fundamental in preventing
cholera transmission. Contaminated water sources are the primary vectors for the bacterium, high-
lighting the need for robust water treatment and safe water storage practices by [13–16]. Efforts to
improve water quality through filtration, chlorination, and ensuring safe water access are critical.
Additionally, environmental cleanliness, including the maintenance of clean living conditions and
proper sanitation facilities, is essential as [17–19]. Public health initiatives must focus on infras-
tructure development and community education to promote sustainable practices that ensure water
and environmental cleanliness. Educating communities about cholera prevention and control is vi-
tal. Regional enlightenment campaigns can significantly impact public health by raising awareness
about the disease, its transmission, and preventive measures by [20, 21]. These campaigns should
focus on informing individuals about the importance of using safe water, practicing good hygiene,
and recognizing the symptoms of cholera for prompt treatment. Tailored educational programs that
consider local customs and practices can enhance community engagement and compliance with pre-
ventive measures [22]. Hand washing with soap and clean water is one of the simplest yet most
effective ways to prevent the spread of cholera. Regular hand washing, particularly before eating
and after using the toilet, can significantly reduce the transmission of the bacterium [23, 24]. Public
health campaigns must emphasize the importance of this practice and ensure that communities have
access to soap and clean water. Installing hand washing stations in public places and schools can
also promote this essential hygiene practice. Proper waste disposal is crucial in preventing cholera
outbreaks. Improperly disposed of human waste can contaminate water sources, facilitating the
spread of Vibrio cholerae [25, 26]. Implementing effective waste management systems, including
the use of latrines and sewage treatment facilities, is vital. Public health initiatives should focus on
constructing and maintaining these facilities and educating communities about the importance of
proper waste disposal in [27]. Safe disposal practices help break the transmission cycle and reduce
the risk of outbreaks. Awareness campaigns play a critical role in cholera prevention. Informing the
public about the disease, its symptoms, and the importance of seeking immediate treatment can save
lives [28–31]. Awareness efforts should also highlight the preventive measures individuals can take
to protect themselves and their communities. Utilizing various media platforms, including radio,
television, social media, and community outreach programs, can effectively disseminate information
and reach a broad audience [32–34]. However, controlling cholera requires a multifaceted approach
that includes effective treatment, vaccination, water and environmental cleanliness, regional enlight-
enment, regular hand washing, proper waste disposal, and public awareness [35]. By addressing
these areas, public health initiatives can significantly reduce the incidence and impact of cholera,
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ultimately aiming for its eradication. Continued research and investment in these strategies are es-
sential to overcoming the persistent threat posed by cholera, particularly in vulnerable regions.

2. Materials and Method

2.1. Model Formulation

The total population N(t) is distinctly divided into six sub-compartments of population sizes of are
Susceptible S(t), Vaccinated V (t), Exposed E(t), Infected I(t), Hospitalized/Treatment T (t) and Re-
covered populationR(t), The rate of migration π or inflow into the population resulting to the spread
of cholera is β as human population are exposed through contaminated water and the hygienic mea-
sure put into practice to avoid ingestion and reduce the contact rate of the disease. Logistic coverage
of public awareness of infected individual at a rate of δ where an exposed individuals are subjected
to contracting cholera at k and rate of recovery denoted with γ, the treatment rate of the hospitalized
individuals ϕ2. More than 75% of contamination risk of vibro-cholerae resulting to spread of the
disease and ϕ1 vaccination rate of susceptible individuals, with ε representing the vaccine efficacy
and shedding rate of infected human population coupled with natural mortality rate for human and
vibro-cholerae are φ and µ.The above parameters can be demonstrated with schematic flow of figure
1 and a system of nonlinear differential equations in equation 1 below respectively.

Figure 2.1: Schematic diagram illustrating the model formulation

dS

dt
= π − βSI − (ϕ1 + µ)S + δR

dV

dt
= ϕ1S − (1− ε)βIV − µV

dE

dt
= (1− ε)βIV + βSI − (k + µ)E (2.1)

dI

dt
= kE − (α+ µ+ γ + ϕ2)I

dT

dt
= ϕ2I − (φ+ µ)T

dR

dt
= φT + γI − (δ + µ)R

Subjected to the initial condition S(0) = s0, V (0) = v0, E(0) = e0, I(0) = i0, T (0) = t0, R(0) = r0 ≥ 0
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Table 2.1: Parameters Description, Values and References

Variable Description
S(t) Susceptible (Vulnerable) population
V (t) Vaccinated population
E(t) Exposed population
I(t) Infected population
T (t) Treatment (Hospitalized) population
R(t) Recovered population

Parameter Description Values References
N Total population 80,000 [11, 29]
ϕ Recovery rate of hospitalized individuals 0.001 [2]
ε Vaccination efficacy 0.5 [9]
φ2 Treatment rate of hospitalized individuals 0.2 [1, 3, 16]
φ Vaccination rate of infected individuals 0.03 [3, 5]
µ Natural death 1.0 [4, 25, 30]
δ Immunity waning rate 0.0016 [26, 32]
π Recruitment rate 0.113 [6, 23]
β Rate of cholera transmission 1.0126 [13]
α Disease induced death rate 0.33182 [31]
γ Natural recovery rate 0.16524 [18, 21]
k Progression rate between exposed and infected class 0.25533 [10]

2.2. Existence and Uniqueness of Model Solution

The system (2.1), which desribes an epidemic disease within a human population, should have pa-
rameters than are nonnegative. To ensure that the system of differential equations in (2.1) is both
mathematically and epidemiologically wel-posed, it is essential to demonstrate that the state vari-
ables in the model are nonnegative. System (2.1) is well-posed when system starts. Nonnegative
initial condition S(0) = s0, V (0) = v0, E(0) = e0, I(0) = i0, T (0) = t0, R(0) = r0 ≥ 0; In the case, the
solutions of system (2.1) will persist in being nonnegative throughout their evolution, t > 0 and that
these positive solutions are bounded. We thu apply the following theorems.

Theorem 2.1. Let (x, y) be distinct points of normed linear space (X, || . . . ||) over R. Then the map of
p : [0, 1] ⊆ R → (X, || . . . ||) such that p(λ) = λx+ (1− λ)y is continuous on [0, 1].

Proof
Let λ0 ∈ [0, 1] then p(λ0) = λ0x+ (1− λ0)y for any λ0 ∈ [0, 1]

||p(λ)− p(λ0)|| = ||(λ− λ0)x+ (λ− λ0)y|| ≤ |λ− λ0|(||x||+ ||y||)

If ε > 0 is given, let δ = ε
||x||+||y|| . Jika |λ − λ0| < δ, then the ||p(λ) − p(λ0)|| < ε. Therefore, p is

continuous at λ0. Since λ0 is arbitrary point in [0, 1]. Then p is continuous on [0, 1]. Let X be a linear
space over R. If (x, y) are distinct points of X , the set λx + (1 − λ)y lies in 0 ≤ λ ≤ 1. Hence, the
solutions of system (2.1) are bounded if we consider the total population

N(t) = S(t) + V (t) + E(t) + I(t) + T (t) +R(t) (2.2)

The variation in the total population concerning time is given by:

dN(t)

dt
=

d

dt
(S(t) + V (t) + E(t) + I(t) + T (t) +R(t)) (2.3)

Such that dN(t)
dt = π − µ(S + V + E + I + T + R) − αI → dN(t)

dt ≤ π − µN . When no outbreak of
cholera, δ = 0. Thus, substituting (2.3) to (2.4) as time progressively increases yields:

lim
t→∞

N(t) ≤ lim
t→∞

[π
µ
+
(
N(0)− π

µ

)
e−µ
]
=
π

µ
(2.4)
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If so N(0) ≤ πN
µ , as N(t) ≤ πN

µ . This is a positive invariant set under the flow described by (2.2)
so that no solution path leaves through any boundary R6

+. However, it is sufficient to consider the
dynamics of the model in the domain R6

+. In this region the model can be considered has been
mathematically and epidemiologically well-posed.

2.3. Positivity and Boundedness of Invariance Region

This shows that the total population N(t) , and the subpopulation S(t), E(t), I(t), T (t), R(t) of the
model are bounded and is a unique solution. Hence, its applicability to study physical systems is
feasible.

Theorem 2.2. Suppose X = x0 is a space of consecutive real number and which are defined as

L(x, y) =
( n∑
i=1

|xi|Ω
) 1

Ω Ω ≥ 1 (2.5)

X with the metric is called ξΩn space. If
∑∞ |x|Ω < Ω or absolutely convergent and L(x, y) =

(∑∞
i=1 |xi −

yi|Ω
) 1

Ω , then X with this metric is called an ξΩ space.

Proof
It can be checked that for each n:

0 ≤ x21 + x22 + x23 + . . .+ x2n ≤ (|x1|+ |x2|+ |x3|+ . . .+ |xn|)2 (2.6)

This will result to;

x21 + x22 ≤ (|x1|+ |x2)2 (2.7)

Therefore,

0 ≤ (x21 + x22 + x23 + . . .+ x2n)
1
2 ≤ |x1|+ |x2|+ |x3|+ . . .+ |xn|, (2.8)

These sequences xn is monotone increasing and bounded above, it therefore converges. Thus∑∞
n=1 xn converges absolutely, if x− n ∈ ξ1, then xn ∈ ξ2 where ξ1 ≤ ξ2. In case of ξ1 denote the set

of all sequences of xn of real numbers such that
∑∞

n=1 xn is convergent absolutely. i.e
∑∞

n=1 |xn| <∞
where as ξ2 denote the set of all sequence xn of real numbers such that

∑∞
n=1 x

2
n < ∞ converges.

From the proceeding xn ∈ ξ1 ⇔ xn ∈ ξ2 i.e. ξ1 ⊆ ξ2. Further, if xn = 1

n
3
4

, then
∑∞

n=1 |xn| diverges and

thus xn /∈ ξ1. But
∑∞

n=1 x
2
n =

∑∞
n=1

1

n
3
4

converges, implying that xn ∈ ξ2. We conclude that ξ1 ⊆ ξ2

and thus ξ1 ̸= ξ2. If (xn, yn) are sequences of real numbers, then;

∞∑
n=1

(xi − yi)
2 ≤

∞∑
n=1

x2i +

∞∑
n=1

y2i + 2
[ ∞∑
n=1

x2i
] 1
2
[ ∞∑
n=1

y2i
] 1
2

Therefore if
∑∞

n=1 x
2
i < ∞ and

∑∞
n=1 y

2
i < ∞ then

∑∞
n=1(xi − yi)

2 < ∞ for all n. The monotone
increasing sequence

[∑∞
n=1(xi−yi)2

]
is the bounded above and hence converges i.e.

∑∞
n=1(xi−yi)2 <

∞. Thus (xi − yi)
2 ∈ ξ2 if (xn, yn) ∈ ξ2.

Given that the S(0) = s0 > 0, V (0) = v0 > 0, E(0) = e0 > 0, I(0) = i0 > 0, T (0) = t0 > 0, R(0) =
r0 > 0, and t > 0, then the solutions S(t), V (t), E(t), I(t), T (t), R(t) of the system (2.1) will always be
nonnegative. Let:

Ψ =
{
S(t), V (t), E(t), I(t), T (t), R(t) ∈ R6

+ : N(t) ≤ π

µ

}
(2.9)
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If fi, i = 1, 2, . . . , 6 where f is a constant. Then∣∣∣∣df1dS
∣∣∣∣ = |(β + ϕ1 + µ+ δ) <∞,

∣∣∣∣df1dV
∣∣∣∣ = |0| <∞,

∣∣∣∣df1dE
∣∣∣∣ = |0| <∞,

∣∣∣∣df1dI
∣∣∣∣ = |α| <∞,∣∣∣∣df1dT

∣∣∣∣ = |α| <∞,

∣∣∣∣df1dR
∣∣∣∣ = |δ| <∞∣∣∣∣df2dS

∣∣∣∣ = |ϕ1| <∞,

∣∣∣∣df2dV
∣∣∣∣ = |(1− ε)β + µ| <∞,

∣∣∣∣df2dE
∣∣∣∣ = |0| <∞,

∣∣∣∣df2dI
∣∣∣∣ = |(1− ε)β| <∞,∣∣∣∣df2dT

∣∣∣∣ = |0| <∞,

∣∣∣∣df2dR
∣∣∣∣ = |0| <∞∣∣∣∣df3dS

∣∣∣∣ = |β| <∞,

∣∣∣∣df3dV
∣∣∣∣ = |(1− ε)β| <∞,

∣∣∣∣df3dE
∣∣∣∣ = |(k + µ)| <∞,

∣∣∣∣df3dI
∣∣∣∣ = |(1− ε)β| <∞,∣∣∣∣df3dT

∣∣∣∣ = |0| <∞,

∣∣∣∣df3dR
∣∣∣∣ = |0| <∞∣∣∣∣df4dS

∣∣∣∣ = |0| <∞,

∣∣∣∣df4dV
∣∣∣∣ = |0| <∞,

∣∣∣∣df4dE
∣∣∣∣ = |k| <∞,

∣∣∣∣df4dI
∣∣∣∣ = |(α+ γ + µ+ ϕ2)| <∞, (2.10)∣∣∣∣df4dT

∣∣∣∣ = |0| <∞,

∣∣∣∣df4dR
∣∣∣∣ = |0| <∞∣∣∣∣df5dS

∣∣∣∣ = |0| <∞,

∣∣∣∣df5dV
∣∣∣∣ = |0| <∞,

∣∣∣∣df5dE
∣∣∣∣ = |0| <∞,

∣∣∣∣df5dI
∣∣∣∣ = |ϕ2| <∞,∣∣∣∣df5dT

∣∣∣∣ = |(φ+ µ)| <∞,

∣∣∣∣df5dR
∣∣∣∣ = |µ| <∞∣∣∣∣df6dS

∣∣∣∣ = |0| <∞,

∣∣∣∣df6dV
∣∣∣∣ = |0| <∞,

∣∣∣∣df6dE
∣∣∣∣ = |0| <∞,

∣∣∣∣df6dI
∣∣∣∣ = |φ| <∞,∣∣∣∣df6dT

∣∣∣∣ = |φ| <∞,

∣∣∣∣df6dR
∣∣∣∣ = |0(µ+ δ)| <∞

Equation (2.10) confirms that system (2.1) is bounded, invariantly and attractively influential on the
bounded region of R6

+.

2.4. Model Disease Free Equilibrium

The cholera-non-infected equilibrium state represents a scenario in which the system is entirely free
from vibro-cholerae spread. Consequently, when the number of infected individuals (I), it follows
that the numbers of exposed (E), treated and recovered (R), i.e. I = E = 0. In this context, the
solution for the cholera-free equilibrium point can be derived as follows:

dS

dt
=
dV

dt
=
dE

dt
=
dI

dt
=
dT

dt
=
dR

dt
= 0 (2.11)

At no outbreak of cholera infection, the diseases class, at t > 0, from (2.11)

(S, V,E, I, T,R) =

(
S0 =

π

(ϕ1 + µ)
, V0 =

πϕ

(ϕ1 − δ + µ)(1− ε)β + µ
,

E0 = 0, I0 = 0, T0 = 0, R0 = 0

)
(2.12)

2.5. Endemic Equilibrium Point

We examine cholera endemicity in a specified population, focusing on strategic interventions like
awareness, immunization, and customized educational programs, with the aim of long-term elim-
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ination strategies. The frequency of cholera on (Sc, Sa, E, I,H,R) at t ̸= 0, stressing the dy-
namic aspect of it to gauge the critical role in its infectious diseases and protect the populace. Let
Ee = (Sc, Sa, E, I,H,R

∗) at steady state I ̸= 0. Examine the equation system in (2.1). The points of
equilibrium are:

S∗ =
(ϕ1 + µ)π(1− ε)2[(α+ µ+ γ + ϕ2)]

[(µ+ ϕ2 + (1− ε))k + (1− ε)]
√
(φ+ µ)γ(γ + (1− ε))k(µ+ γ + β)

V ∗ =
(1− ε)π

√
(α+ µ+ φ2)

(1− ε)k + (δ + µ+ ϕ1)[(µ+ α+ δ)]

E∗ =
[π(µ = α) + (µ+ γ + ϕ2)

√
(k + φ+ µ)(δ + µ+ γ)]

[µ2(ϕ1 + µ) + (1− ε)]

I∗ =
(1− ε)k(µ+ γ + (φ+ ϕ1))

(β + µ+ φ)[(µ+ α+ (1− ε)γ)]
+

√
(k + ϕ2 + µ)(δ + µ+ ϕ1)

(1 + α)−1(γ + µ+ k)

T ∗ =
(µ+ γ + (1− ε))

(δ + µ+ φ)[(µ+ ϕ2 + (1− ε)ϕ1)]
+

√
(k + µ)(δ + µ+ φ)

(1 + α)−1(γ + µ+ k)

R∗ =
(1 + α)

[µ2 + (φ+ µ) + (1− ε)]
+

√
(µ+ (1− ε)k + π) + βk2

(β + α)(γ + µ+ k)(ε+ µ+ δ)

2.6. Basic Reproduction Number

The basic reproduction number, denoted as R∗. It is necessary to quantify the probability of new
cholera infections resulting from a single carrier or sick person in a population without previous
illnesses. We use the next-generation approach to create the system described in System (1), focus-
ing on the infectious classes. The F and V matrices, which represent the rates of new infections
and transitions into and out of the infected compartment, respectively, are computed as part of this
methodology. These matrices are obtained using a complex derivation from the equations in system
(2.1), R∗ = ρ(G − λI) taking G = F × V −1 and ρ is the spectral radius of the matrix |G − λI|. From
the system of equation (2.1) it is obtained for matrix F and V :

Fi =

(
∂fi(xi)

∂xj

)
Vi =

(
∂vi(xi)

∂xj

)
And

f =

(
βIS0 + (1− ε)βIV0

0

)
and v =

(
(k + µ)E

−kE + (α+ µ+ γ + ϕ2)I

)
Then,

F =

(
0 π[(1−ε)β+µ+ϕ1]

(ϕ1−δ+µ)(1−ε)β+µ

0 0

)

V =

(
(k + ε) 0
−k (α+ µ+ γ + ϕ2)

)
FV −1 =

1

(k + µ)(α+ µ+ γ + ϕ2)

(
0 π[(1−ε)β+µ+ϕ1]

(ϕ1+µ)(1−ε)β+µ

0 0

)(
(α+ µ+ γ + ϕ2) 0

−k (k + µ)

)
R∗ =

π[(1− ε)β + µ+ ϕ1]

[(ϕ1 − δ + µ)(1− ε)β + µ](α+ µ+ γ + ϕ2)
(2.13)
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2.7. Quantitative Analysis of Rε

Performing a quantitative analysis for the basic reproduction numberR0 using initial values lies in its
ability to assess the potential spread of a cholera disease as an infectious disease within a population.
This analysis helps in understanding the epidemiological dynamics and effectiveness of control mea-
sures of vaccination and treatment in the control of its spread where if R0 > 1, the disease can spread
in the population and the disease will eventually die out. Initial values number of susceptible indi-
viduals, infection rates, recovery rates provide the starting conditions for the model. These values are
critical for accurately estimating R0 and predicting the early-stage growth of the infection. Applying
differential equations to describe disease transmission. Application and interpretation of this helps
in public health decision-making by determining the required vaccination coverage or intervention
strategies to control an outbreak. Provides insight into the potential severity of an epidemic and
guides resource allocation. Here, we conduct a quantitative analysis of Rε to assess its metric pro-
gression concerning each intervention method. By excluding the values of intervention parameters,
we assess equation (2.13) using the baseline values provided in Table 1, yielding equation (2.14),
subsequently resulting in equations (2.15) through (2.18). The outcomes of these calculations are
presented in Table 2.

R· =
π[(1− 0.028762)β + 0.0087363 + 0.5263532ϕ1]

[(1.27364− 0.9377847 + 0.38736α)(1− 0.7653ε)β + 0.872625](0.9972 + 0.5243436ϕ2)
(2.14)

Rε = f(ϕ)
∣∣
δ=0,τ=0,ϕ2

= −1.7363526ϕ1 + 1.459137886ϕ2 (2.15)

Rε = f(φ)
∣∣
α=0,ρ1=0,ρ2=0

=
0.005728262500

0.0000133φ+ 0.0039257856α
(2.16)

Rε = f(ϕ2)
∣∣
c=0,ϕ2=0,τ=0

=
0.093762(0.09756 + 0.54ϕ1)

0.137747ϕ2 + 0.018ϕ1
(2.17)

Rε = f(ε)
∣∣
ρ1=0,τ=0,ρ2=0

= 1.38947804− 1.9276424ε (2.18)

Table 2.2: Standalone Metric of Vaccination and General Treatment Rε

s/n φ β φ2 ε Rε

1 0 0 0 0 1.4591378
2 0.2 0 0 0 1.1964930
3 0.4 0 0 0 0.93384824
4 0.6 0 0 0 0.67120342

s/n φ1 β φ2 Rε

0 0 0 0 1.45913788
0 0.2 0 0 1.16731030
0 0.4 0 0 0.87548273
0 0.6 0 0 0.58365515

s/n φ1 β φ2 Rε

0 0 0 0 1.45913788
0 0 0.2 0 0.25434513
0 0 0.4 0 0.20246410
0 0 0.6 0 0.18416303

Analysis of the above table reveals that utilizing vaccination and treatment independently at 40%
to 60% efficacy effectively reduces disease transmission. However, even at 90% efficacy, treatment
fails to significantly impact the reproduction number due to untreated individuals in the community.
Hence, with 100% public awareness and sensitization which treatment and vaccination are priori-
tized and achieving Rε = 1 is a level attainable through vaccination and treatment campaign.
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Figure 2.2: Sensitivity indices as it affects the basic reproduction number

2.8. Local Stability of Disease Free State

We examined the local stability of the disease-free state for cholera by analysing the minimal recur-
rence rate impact. When the recurrence rate R∗, the disease declines, to determine stability using a
Jacobian matrix and a characteristic equation.

Theorem 2.3. The disease-free state of the model is locally asymptotically stable R∗ < 1, otherwise R∗ > 1

Proof
The linearization method is used to construct the Jacobian matrix of the system of (2.1) and assess it
at the illness free-state in order to determine the disease-free equilibrium.

JE1 =



−(β + µ+ ϕ1 + δ) 0 0 β 0 0
ϕ1 −[(1− ε)β + µ] 0 (1− ε)β 0 0
β (1− ε)β −(k + µ) (1− ε)β 0 0
0 0 k −(α+ µ+ γ + ϕ2) 0 0
0 0 0 ϕ2 −(φ+ µ) 0
0 0 0 γ φ −(δ + µ)

(2.19)

Computing for the eigenvalues, |JE1 − λiI| = 0∣∣∣∣∣∣∣∣∣∣∣∣

−(β + µ+ ϕ1 + δ) 0 0 β 0 0
ϕ1 −[(1− ε)β + µ] 0 (1− ε)β 0 0
β (1− ε)β −(k + µ) (1− ε)β 0 0
0 0 k −(α+ µ+ γ + ϕ2) 0 0
0 0 0 ϕ2 −(φ+ µ) 0
0 0 0 γ φ −(δ + µ)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

as obtained:

λ = −(v + µ),

λ = −(α2 + µ),

λ = −µ
∣∣∣∣−(α+ µ+ γ + ϕ2)− λ 0

ϕ2 −(φ+ µ)− λ

∣∣∣∣ ,
λ = −(α+ µ+ γ + ϕ2),

λ = −(φ+ µ)
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respective eigenvalues in invariant in the region R6
+ of the model, indicating a biological implication

that there will be a decreases in the spread over time if necessary control measures as indicated are
strictly adhere to. Where

λ1 = −(β + µ+ ϕ1 + δ)

λ2 = −[(1− ε)β + µ]

λ3 = −(k + δ) (2.20)
λ4 = −(α+ µ+ ϕ1 + γ)

λ5 = −(φ+ µ)

λ6 = −(µ+ δ)

Hence the system of the (2.20) obtained from (2.19) is asymptomatically stable ∀λn < 0, n =
1, 2, . . . , 6, t > 0

2.9. Local Stability of Endemic Equilibrium Point

Theorem 2.4. The suggested model of cholera disease has a locally asymptotically stable in region resilience
if the recurrence rate R∗ < 1 and unstable whenever R∗ > 1. If endemicity of cholera spread within the
population is not curtailed

Proof
Suppose,

S = x+ S∗, V = y + V ∗, E = z + E∗, I = α+ I∗, T = b+ T ∗, R = c+R∗

Linearizing equation (2.1), is then obtained as

dS

dt
= π − β(x+ S∗)(α+ I∗)− (ϕ1 + µ)(x+ S∗) + δ(x+R∗)

dV

dt
= ϕ1(x+ S∗)− (1− ε)β(α+ I∗)(y + V ∗)− µ(y + V ∗)

dE

dt
= (1− ε)β(α+ I∗)(y + V ∗) + β(x+ S∗)(α+ I∗)− (k + µ)(z + E∗)

dI

dt
= k(z + E∗)− (α+ µ+ γ + ϕ2)(α+ I∗)

dT

dt
= ϕ2(α+ I∗)− (φ+ µ)(b+ T ∗)

dR

dt
= φ(b+ T ∗) + γ(α+ I∗)− (δ + µ)(c+R∗)

Linearizing equation (2.12), is then obtained as

dx

dt
= −βαx− (α1 + µ)x− δx+ higher order + non-linear terms . . .

dy

dt
= ϕ1x− (1− ε)βαy − µy + higher order + non-linear terms . . .

dz

dt
= (1− ε)βαy + βαx− (k + µ)z + higher order + non-linear terms . . .

da

dt
= kz − (α+ µ+ γ + ϕ2)α+ higher order + non-linear terms . . .

db

dt
= ϕ2a− (φ+ µ)b+ higher order + non-linear terms . . .

dc

dt
= φb+ aγ − (δ + µ) + higher order + non-linear terms . . .
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The characteristic equation obtained from its Jacobian matrix is;∣∣∣∣∣∣∣∣∣∣∣∣

A− λ 0 07− βax 0 0
ϕ1x− [(1− ε)βay + µ]y − λ 0 (1− ε)βay 0 0

βax (1− ε)βay B − λ βax 0 0
0 0 kz C − λ 0 0
0 0 0 aϕ2 −(φ+ µ)− λ 0
0 0 0 aγ φb (δ + µ)c

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Denoting that A = −(βa + µ + ϕ1)x, B = −[βax − (k + µ)z], C = −(α + µ + γ + ϕ2) the resulting
eigenvalue of the above matrix is obtained as;

λ6 − (x(a+ y) + (c+ b))λ5 + ((x+ c)(y + s) + az + by)(1 + b)λ4 − (ab(c+ z) + bc(a+ y))

(1 + z)λ3 + y(cz(a+ b) + xb(a+ y))λ2 − (a+ c)(x+ y)λ+ abcxyz = 0

With the invariance of the eigen-values it is said to be locally assymptotically stable.

2.10. Global Stability of Disease Free Equilibrium

Using the Lyapunov method and Lyapunov’s function approach, we determine the global asymptotic
stabillity of the model for equation (2.1) at the disease free equilibrium.

Φ(t, S, V,E, I, T,R) = C1I1 + C2I2 + C3I3

dΦ

dt
= C1I

∗ + C2I
∗ + C3I

∗

= C1((1− ε)βI2V + βI2S − (k + µ)I1) + C2(kI1 − (α+ γ + ϕ2 + µ)I2) + C2(ϕ2I2 − (φ2 + µ)I3)

= C2kI2 − C1(k + µ)I1 + C1(1− ε)ηI2V + C1βI2S − C2(α+ γ + ϕ2 + µ)I2 + C3ϕ2I2

−C3(φ2 + µ)I3

≤ C2k − C1(k + µ))I1 + (C1(1− ε)βV0) + C1βS0 − C2(α+ γ + ϕ2 + µ) + C3ϕ2)I2

−C3(φ2 + µ)I3

S0 =
π

(ϕ1 + µ)
, V0 =

πϕ1
(ϕ1 − δ + µ)(1− ε)β + µ

,E0 = 0, I0 = 0, T0 = 0, R0

S0 =
π

(ϕ1 + µ)
, V0 =

πϕ1
(ϕ1 − δ + µ)(1− ε)β + µ

,C1 =
1

(k + µ)
, C2 =

(
(ϕ2 + µ− δ)(1− ε)α + β

π(ϕ2 + µ+ δ + γ)(α+ µ)

)
dΦ

dt
≤ C1

(
π(1− ε)β + πµ+ πϕ1
[(ϕ1 − δ + µ)(1− ε)]

− (k + µ)

(k + µ)

)
I1

−
(
π(γ + µ+ δ)(1− ε)β + µ

(ϕ1 + µ)(γ + µ+ δ)(1− ε)
− π(γ + µ+ δ)(1− ε)β + µ

(ϕ1 + µ)(γ + µ+ δ)(1− ε)

)
I2

dΦ

dt
≤ ψ(R0 − 1)

It is pertinent to note that when at t → ∞ and C1 < 1. Substituting into model system of equation
(18) reveal that, based on LaSalle’s invariance principle dΦ

dt = 0, is globally asymptotically stable
whenever R∗ > 1.
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2.11. Global Stability of Endemic Equilibrium

Theorem 2.5. The Dulac criterion is a method used in dynamical systems to determine the absence of periodic
orbits in a given region of the phase plane, which can be extended to analyze the global stability of an equilibrium
point.

Proof
For a dynamical system described by the differential equation:

dx

dt
= f(x, y) ⇔ dy

dt
= g(x, y) (2.21)

The Dulac criterion states that if there exists a continuously differentiable function B(x, y) (called the
Dulac function) ssuch that the expression:

∂

∂x
(B(x, y)f(x, y)) +

∂

∂x
(B(x, y)g(x, y)) (2.22)

is either strictly positive or strictly negative throughout a simply connected region D of the phase
plane, then there are no closed trajectories (periodic orbits) contained within D.
TO apply this to determine the global stability of an endemic equilibrium (x∗, y∗). Also define the
Dulac function B(x, y) and the expression ∂

∂x(B(x, y)f(x, y)) + ∂
∂x(B(x, y)g(x, y)) as B(x, y)g(x, y)

This shows that this expression is of one sign 9either strictly positive or strictly negative) in the region
of interest. If such a Dulac function B(x, y) can be found, the system has no periodic orbits in that
region, suggesting the global stability of the endemic equilibrium if no other attractors exist. Hence,
if ∃B(x, y) ∈ C1 such that ∂

∂x(B(x, y)f(x, y)) + ∂
∂x(B(x, y)g(x, y)) ̸= 0 in D. Then there are no closed

trajectories in D. This criterion is useful in proving the global stability of the endemic equilibrium
when combined with other stability analysis techniques.
We employ this concept Dulac’s criterion Let X = (S, V,E, I, T,R) define the Dulac’s function G =
1
SI The following system of equation are obtained;

G
dS

dt
=

1

SI
{π − βSI − (ϕ1 + µ)S + δR} (2.23)

G
dV

dt
=

1

SI
{ϕ1S − (1− ε)βIV − µV } (2.24)

G
dE

dt
=

1

SI
{(1− ε)βIV + βSI − (k + µ)E} (2.25)

G
dI

dt
=

1

SI
{kE − (α+ µ+ γ + ϕ2)I} (2.26)

G
dT

dt
=

1

SI
{ϕ− 2I − (φ+ µ)T} (2.27)

G
dR

dt
=

1

SI
{φT + γI − (δ + µ)R} (2.28)

The above system of equations results to;

G
dS

dt
=

{
π

SI
− β − (ϕ1 + µ)

I
+
δR

SI

}
G
dV

dt
=

{
ϕ1
I

− (1− ε)β

S
− µ

S

}
G
dE

dt
=

{
(1− ε)β

S
+ β − (k + µ)E

S

}
G
dI

dt
=

{
kE

SI
− (α+ µ+ γ + ϕ2)

I

}
96



Stability Analysis of SVEITR Model for Cholera Control with Treatment and Vaccination Using Laplace Adomian Decomposition Method

G
dT

dt
=

{
ϕ2
S

− (φ+ µ)T

SI

}
G
dR

dt
=

{
φT

SI
+
γ

S
− (δ + µ)R

SI

}
At t > 0 orbital resolution of the system of equations is given by d(GX)

dt as obtained below.

d(GX)

dt
=

∂

∂S

{
G
dS

dt

}
+

∂

∂V

{
G
dV

dt

}
+

∂

∂E

{
G
dE

dt

}
+

∂

∂I

{
G
dI

dt

}
+

∂

∂T

{
G
dT

dt

}
+

∂

∂R

{
G
dR

dt

}
d(GX)

dt
=

∂

∂S

{ π
SI

− β − (ϕ1 + µ)

I
+
δR

SI

}
+

∂

∂V

{ϕ1
I

− (1− ε)β

S
+
µ

S

}
+

∂

∂E

{(1− ε)β

S

+β − (k + µ)E

S

}
∂

∂I

{kE
SI

− (α+ µ+ γ + ϕ2)

I

}
+

∂

∂T

{ϕ2
S

− (φ+ µ)T

SI

}
+

∂

∂R

{φT
SI

+
γ

S
− (δ + µ)R

S

}
d(GX)

dt
=

{
− [π + β + (ϕ1 + µ) + δ]

SI

}
+

∂

∂V

{
− ϕ1 + (1− ε)β + µ

SI

}
+

∂

∂E

{
− (1− ε)β + β + (k + µ)

S

}
∂

∂I

{
− k + (α+ µ+ γ + ϕ1)

SI

}
+

∂

∂T

{
− ϕ2 + (φ+ µ)

S

}
+

∂

∂R

{
− φ+ γ + (δ + µ)

SI

}
d(GX)

dt
= −

{
A(1− v) + [(1− ρ) + ρβ] + (m+ µ)

SI
+
m+ (1− ρ)− (ρβ + µ)

I
+

(1− ρ)β + (δ + µ)

I

+
δ + ρβ + (γ + µ+ d)

SI
+
Av + γ − µ

SI

}
d(GX)

dt
= −

{A(1− v) + [(1− ρ) + ρβ] + σ(m+ µ) + γ[m+m(1− ρ)− v(ρβ + µ)] + (1− ρ)β + (δ + µ)

SI

}
< 0

This implies that the system has no closed orbit. It therefore portray epidemiologically that, no
existence of a periodic orbit which implies that there are fluctuations in the number of infective,
which makes it pretty obvious that in allocation of resources for the control of the disease, vaccination
will help to eradicate the rapid spread of cholera with time.

2.12. Sensitivity Analysis of R∗

The principal objective is to evaluate the recurrence rate’s sensitivity by calculating its derivative
with respect to all pertinent parameters. Sensitivity analysis value indices assess how treatment and
vaccination impact the basic reproduction number R∗ of cholera, identifying key factors that reduce
transmission and guide effective control strategies to curb outbreaks. As a result of this investigation,
the normalized forward sensitivity index, as obtained

∂R∗
∂β

∂R∗
∂β

× β

R∗
= 1.002863633

∂R0

∂ε

∂R0

∂ε
× ε

R0
= 0.00733623

∂R∗
∂π

∂R∗
∂π

× π

R∗
= 1.03267370

∂R∗
∂ϕ1

∂R∗
∂ϕ1

× ϕ1
R∗

= 0.001307654

∂R∗
∂ϕ2

∂R∗
∂ϕ2

× ϕ2
R∗

= 1.1096546
∂R∗
∂µ

∂R∗
∂µ

× µ

R∗
= 0.15356728

∂R∗
∂δ

∂R∗
∂δ

× δ

R∗
= 1.108763

∂R∗
∂φ

∂R∗
∂φ

× φ

R∗
= 0.765438

∂R∗
∂ϕ2

∂R∗
∂ϕ2

× ϕ2
R∗

= 0.564321

Table (2.3) shows that the sensitivity indices of are positively invariant in R+
6 the sensitivity indices
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Table 2.3: Sensitivity Analysis and Parameter Indices

Parameters Sensitivity Indices
β 0.01206000
ε 1.03267370
α 0.18743076
δ 0.00001001
φ1 1.00000000
φ2 1.000201001

depend on the values of the each parameters of R∗, and this brings about changes in the values that
will affect the behaviour of the threshold on the spread or vanity of cholera disease. Based on the
Table 2.3 above, we can concluded that parameter ε is the most sensitive to the basic reproduction
number of the cholera disease. Particularly, increasing the value of ε will result in a 80.86% increase
in R∗, while increasing the value of will lead to a 91.52% decrease in R∗.

2.13. Numerical Simulation

We conducted numerical simulation on the mathematical model, we create the following iterative
scheme of Laplace adomian decomposition method for the model equation. The Laplace adomian
decomposition method was employed to computationally analyse the epidemic model. Maple soft-
ware facilitated the generation of iteration formulas for each compartment. These formulas were
then iteratively solved, enabling the numerical evaluation of the model’s dynamics and providing
insights into the epidemic’s behaviour and progression. Taking the Laplace transform of both sides
of the above equation.

L
[dS
dt

]
= L[π]− L[βSI − (ϕ1 + µ)S + δR]

L
[dV
dt

]
= L[ϕ1S]− L[(1− ε)βIV − µV ]

L
[dE
dt

]
= L[(1− ε)βIV ]− L[βSI − (k + µ)E]

L
[dI
dt

]
= L[kE]− L[(α+ µ+ γ + ϕ2)I]

L
[dT
dt

]
= L[ϕ2I]− L[(φ+ µ)T ]

L
[dR
dt

]
= L[φT ]− L[γI − (δ + µ)R]

Substituting from (2.22) into (2.23) to yeild

mL[S(t)] = S(0) + π + L[−α[SI]− π − βSI − (ϕ1 + µ)S + δR]

mL[V (t)] = V (0) + L[β1S]− L[ϕ1S − (1− ε)βIV − µV ]

mL[E(t)] = E(0) + L[αSI]− L[(1− ε)βIV + βSI − (k + µ)E]

mL[I(t)] = I(0) + L[kE]− L[(α+ µ+ γ + ϕ2)I]

mL[T (t)] = I(0) + L[ϕ2I]− L[(φ+ µ)T ]

mL[R(t)] = R(0) + L[φT ]− L[γI − (δ + µ)R]
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Where S(0) = s0, V (0) = v0, E(0) = e0, I(0) = i0, R(0) = r0

L[S(t)] =
s0
m

+
π

m2
+

1

m
L[−α[SI]− βSI − (ϕ1 + µ)S + δR]

L[V (t)] =
v0
m

+
1

m
L[ϕ1S]− L[(1− ε)βIV − µV ]

L[E(t)] =
e0
m

+
1

m
+ L[(1− ε)βIV ]− L[βSI − (k + µ)E]

L[I(t)] =
i0
m

+
1

m
+ L[kE]− L[(α+ µ+ γ + ϕ2)I]

mL[T (t)] =
r0
m

+
1

m
+ L[ϕ2I]− L[(φ+ µ)T ]

mL[R(t)] =
r0
m

+
1

m
+ L[φT ]− L[γI − (δ + µ)R]

Letting the non-linear terms in the above iteration and substitutes by taking the inverse Laplace
transform of both sides,

S(t) = s0 + π + L−1
( 1
m
L[π − βSI − (ϕ1 + µ)S + δR]

)
V (t) = v0 + L−1

( 1
m
L[ϕS]− L[(1− ε)βIV − µV ]

)
E(t) = e0 + L−1

( 1
m

+ L[(1− ε)β]− L[βSI − (k + µ)E]
)

I(t) = i0 + L−1
( 1
m
L[kE]− L[(α+ µ+ γ + ϕ2)I]

)
T (t) = i0 + L−1

( 1
m

+ L[ϕ2I]− L[(φ+ µ)T ]
)

R(t) = r0 + L−1
( 1
m
L[φT ]− L[γI − (δ + µ)R]

)
Subsequently, iteration result obtained from the above equation of systems is deduced as;

∞∑
k=0

Sn(t) = s0 + πt+ L−1

(
1

m
L

[
− α

∞∑
k=0

πn − ϕ1

∞∑
k=0

Sn + ϕ2

∞∑
k=0

V0 − µ
∞∑
k=0

Sn

])
∞∑
k=0

Vn(t) = v0 + πt+ L−1

(
1

m
L

[
−

∞∑
k=0

((1− ε)β)− β1

∞∑
k=0

Vn + β2

∞∑
k=0

Vn − µ
∞∑
k=0

Vn

])
∞∑
k=0

En(t) = e0 + L−1

(
1

m
+ Lφ

∞∑
k=0

εn − L[β − (k + µ)]
∞∑
k=0

En

)
∞∑
k=0

In(t) = i0 + L−1

(
1

m
+ Lδ

∞∑
k=0

En − L[(α+ µ+ γ + ϕ2)]
∞∑
k=0

In

)
∞∑
k=0

Tn(t) = i0 + L−1

(
1

m
Lα

∞∑
k=0

En − L[(φ+ µ)]

∞∑
k−0

Tn

)
∞∑
k=0

Rn(t) = i0 + L−1

(
1

m
+ Lϕ2

∞∑
k=0

En − L[(δ + µ)]
∞∑
k=0

Rn

)

The initial approximations of each class are given by; S0(t) = s0 + πt, V0(t) = v0, E0(t) = e0, I0(t) =
i0, T0(t) = t0, R0(t) = r0. Now, comparing the coefficients n = 1. Using the recurrence relations
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obtained from the iterations, Compartmentally it is obtained that

S1(t) = (πi0s0 − µs0 − βs0 + ϕ1v0)t+

(
− 1

2
αi0ε−

1

2
µπ − 1

2
δφ1

)
t2

V1(t) = (−µs0 + φ0s0 − βs0 + (1− ε)s0)t+
1

2
εβ1t

2

E1(t) = (φi0s0 − µe0 − δe0)t+
1

2
απi1t

2

I1(t) = kE − (α+ µ+ γ + ϕ2)I(−δi0 − α+ µ+ γ + ϕ2e0i0 + σe0)t

T1(t) = (−µr0 + ϕ2s0v0 + (φ+ µ)i0)t

R1(t) =
1

3
φϕ2

(
− φ+ µr0 +

1

2
(δ + µ)i0

)
t

Further iteration are done to obtain successive iterative terms at n = 2

S2(t) =

(
1

2
α2i2s0 +

1

2
αis0 +

1

3
αis0µ0 +

1

2
αis0ρ0 −

1

2
αis0e0 +

1

2
αis0β1 −

1

2
αis0β2

+
1

2
µ2s0 + β1µs0 + β1µv0 +

1

2
β2s0 +

1

2
β1β2s0 −

1

2
β1β2v0 −

1

2
β22v0

)
t2

+

(
1

6
α2i2θ +

1

3
αi0πδ +

2

3
αi0πµ+

1

3
αi0πρ−

1

3
αe0θσ +

1

3
αi0πβ1 +

1

6
µ2θ

+
1

3
β0πµ+

1

6
β21π +

1

6
β2πβ1

)
t3

V2(t) =

(
− 1

2
αis0β1 +

1

2
µ2v0 − β1µs0 + β2µs0 −

1

2
β2s0 +

1

2
β1β2s0 −

1

2
β1β2v0 +

1

2
β22v0

)
t2

+

(
− 1

6
αi0πβ1 −

1

3
β1µπ − 1

6
β21π +

1

6
β2πβ1

)
t3

E2(t) =

(
− 1

6
α2i2π − 1

3
αi0πδ −

2

3
αi0πµ− 1

3
αi0πρ+

1

3
αe0πσ1 −

1

6
µ2π − 1

6
αi0πβ1

)
t3

+

(
− 1

2
α2i2s0 −

1

2
σis0 −

2

3
αis0µ0 −

1

2
αis0ρ0 +

1

2
αis0v9 − µ2ie0β1 +

1

2
αie0σ

2

)
t2

I2(t) = −1

6
α2i2θ +

(
1

2
σαis0 +

1

2
δ2i− 0 + δµi0 −

1

2
δσie0 +

1

2
µ2i0 − µρi0 − µσi0 +

1

2
ρ2i0

−1

2
ρσie0 −

1

2
σ2e0

)
t2

T2(t) =
1

6
α2i2θ +

(
1

2
σαis0 +

1

2
δ2i− 0 + δµi0 −

1

2
δσie0 +

1

2
µ2i0 − µρi0 − µσi0 +

1

2
ρ2i0

−1

2
ρσie0 −

1

2
σ2e0

)
t2

R2(t) =

(
− 1

2
δρi0 +

1

2
µ2r0 − µσi0 −

1

2
ρ2i0 +

1

2
ϕ1φe0

)
t2

and so on. This can be further till desired number of iterations are obtained. Thus, the obtained raw
solution to each model compartment is obtained as:

S(t) =
3∑

k=0

sk(t), V (t) =
3∑

k=0

vk(t), E(t) =
3∑

k=0

ek(t), I(t) =
3∑

k=0

ik(t), R(t) =
3∑

k=0

rk(t)
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Evaluating these series result using corresponding variables and parameter values,

S(t) = 500.012− 30.4440t+ 1.1315290300t2 − 0.0507029853t3 − 3.509616000× 10−13t5

−5.179149070× 10−7t4

V (t) = 120− 1.5060t− 0.01591470000t2 + 0.001033697580t3 + 9.015111000× 10−9t4

E(t) = 65 + 18.178t− 1.171778775t2 + 0.04929560765t3 + 5.087939775× 10−7t4

+3.509616000× 10−13t5

I(t) = 23.09− 60t+ 0.0292567500t2 − 0.0008440367798t3 − 4.378044000× 10−9t4

T (t) = 23.09− 60t+ 0.0292567500t2 − 0.0008440367798t3 − 4.378044000× 10−9t4

R(t) = 14− 0.0155t− 0.005054500000t2 + 0.0001458242541t3 + 2.437075000× 10−10t4

Hence from the results of successive iterations, comparison of control intervention effects on
sub-populations in its graphical illustration depicts as;

Table 2.4: Comparison of parameters φ1 and φ2 values for ε at ε = 0 . . . 0.5

Variables Description At ε = 0.1, 0.25, 0.5
E(t) exposed population 0.5, 0.25, 0.125
I(t) infected population 0.5, 0.25
R(t) recovered population 0.125
φ treatment intervention 0.1, 0.2, 0.5
φ2 vaccination intervention 0, 0.1, . . ., 0.5
Time 0 ≤ t ≤ 20

3. Result and Discussion

Graphical illustration of the resulting iterations is thus shown below:

Figure 3.3: Total number of infected in-
dividuals without any control measure

Figure 3.4: Adverse effect of low vac-
cination and treatment campaign to in-
fected individuals
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Figure 3.5: Comparison between mod-
erate treatment and vaccination in in-
fected cholera patients

Figure 3.6: Comparison between control
measures for infected individuals: mod-
erate vaccination without treatment

From results obtained, Figure 3.3, depicts that the effect of treatment ϕ2 and vaccination rate
ϕ1 on the population of infected individuals which is vital in the control of cholera disease as this
brings about a fall in its absence and steep-slope in the spread of the cholera disease in the infected
individuals. Figure 3.4 shows the adverse effect of low vaccination rate on infected individuals, as
a fall in the vaccination rate increases the population of the susceptible and recovered population
will leads to a drastic rise in the exposed population. Consequently, Figure 3.5 depicts similarly
as Figure 3.4 from above that an increases in treatment rate of exposed individuals will lead to an
increases in the population of non-diseases classes. Moreover, comparison of the control policies of
treatment and vaccination with adequate measure will bring about drastic fall in infected individuals
Figure 3.6 came with a rise in treatment and vaccination rate which increases brings about drastic
fall in the wide spread of cholera disease in the disease population. However, infected individuals
with moderate vaccination will recover rapidly haven been treated properly and individuals without
proper treatment are not free of the deadly diseases as vaccination and treatment rate are vital as
control measure to eradicating the wide spread of cholera from the population

4. Conclusion

Combining rapid and moderate treatment with vaccination to infected regions this will drastically
reduce the spread of cholera. These interventions lower infection rates and mitigate the disease’s im-
pact. Healthcare personnel must prioritize and adhere to these measures for effective outbreak con-
trol. Prompt and moderate treatment, along with widespread vaccination, should be key components
of public health strategies to combat this persistent disease. Implementing these recommendations
will significantly aid in managing and ultimately eradicating cholera.
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