
J. DIFERENSIAL/E-ISSN:2775-9644
Vol.7(1),2025, 47–54 doi:https://doi.org/10.35508/jd.v7i1.19996

RESEARCH ARTICLE

Some Conditions for the Boundedness of Commutators of
Fractional Integrals on Generalized Weighted Morrey Spaces

Yusuf Ramadana1,*

1Mathematics Department, State University of Makassar, Makassar, Indonesia
*Corresponding author: yusuframadana@unm.ac.id

Received: 13 December 2024; Revised: 11 March 2025; Accepted: 16 March 2025; Published:8 April 2025.

Abstract:
In this paper, we investigate the boundedness of commutators generated by b ∈ BMO and fractional
integrals Iα from Mp,wp

ψ1
to Mq,wq

ψ2
for 1 < p < q < ∞. We obtain some new conditions for the pair

(ψ1, ψ2) of the functions ψ1 and ψ2 on Rn × (0,∞) that ensure the boundedness properties.
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1. Introduction

Morrey spaces were first introduced by C. B. Morrey in 1938 [1]. Many authors then studied commu-
tators of a certain operator on the spaces [2], [3]. Generalized Morrey spaces were then introduced as
in [4]. In 2009, Komori and Shirai [5] introduced the weighted Morrey space Lp,κ(w). The two spaces
Lp,φ and Lp,κ(w) were then generalized by Guliyev as generalized weighted Morrey space Lp,φ(w).

The topic of boundedness operator on function spaces was investigated by many mathematicians
particularly related to the Morrey spaces. Fractional integrals and Morrey spaces have many appli-
cations in harmonic analysis and PDEs. The application of the operator as well as the function spaces
may be found in [6].

The boundedness of fractional integral Iα on generalized weighted Morrey spaces is well-known,
see [7, 8] for example. The boundedness of commutators of fractional integrals on weighted Lebesgue
space was studied by Segovia and Torrea [9]. Shirai [10] gave the necessary and sufficient condition
for the boundedness of commutators of fractional integrals on classical Morrey space under some
assumptions. Guliyev [11] gave the conditions on the parameter function ψ1 and ψ2 that ensure the
boundedness of commutators. The conditions involved the logaritmic natural function. In this paper,
we give some new conditions for the pair ψ1 and ψ2 that ensure the boundedness of commutator of
fractional integrals from Mp,wp

ψ1
to Mq,wq

ψ2
. In precise, the followings are our main results.

Theorem 1.1. Let 0 < α < n, 1 < p < n/α, 1/q = 1/p− α/n, w ∈ Ap,q and Iα be the fractional integrals.
Suppose that ψ1, ψ2 be positive functions on Rn such that there exists C > 0 and β > 0 for which

sup
(a,r)∈Rn×(0,∞),λ≥2

λβ

ψ2(a, r)

∫ ∞

λr
ψ1(a, s)

ds

s
≤ C.
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If b ∈ BMO, then [b, Iα] is bounded from Mp,wp

ψ1
to Mq,wq

ψ2
. Precisely, there is a constant D > 0 such that

∥[b, Iα]f∥Mψ2
q,wq

≤ D∥b∥∗∥f∥Mψ1
q,wq

, f ∈ Mp,wp

ψ1
.

Corollary 1.1. Let 0 < α < n, 1 < p < n/α, 1/q = 1/p−α/n, and Iα be Riesz potential. Assume that there
is a constant β > 0 such that

sup
r<s<∞

ψ1(a, s)
wp(B(a, s))

1
p

wq(B(a, s))
1
q

sβ ≤ Cψ2(a, r)r
β

for all (a, r) ∈ Rn × (0,∞). If b ∈ BMO and w ∈ Ap,q, then [b, Iα] is bounded from Mp,wp

ψ1
to Mq,wq

ψ2
.

Precisely, there is a constant D > 0 such that

∥[b, Iα]f∥Mψ2
q,wq

≤ D∥b∥∗∥f∥Mψ1
q,wq

, f ∈ Mp,wp

ψ1
.

2. Some Definitions and Previous Results

Let a ∈ Rn and r > 0. We denote B(a, r) as an open ball centered at a with radius r. For the Ball
B = B(a, r) and k > 0, kB denotes B(a, kr), namely the ball with the same center as B but with
radius k times r. Moreover, |E| denotes the Lebesgue measure of a measurable subset E of Rn. A
weight w is a nonnegative locally integrable functions on Rn taking values in the interval (0,∞)
almost everywhere [5].

For the weight w, 1 ≤ p <∞, andE a measurable subset of Rn, we write Lp,w(E) by the weighted
Lebesgue space over E that collects any functions f defined on E such that ∥f∥Lp,w(E) is finite where

∥f∥Lp,w(E) =

(∫
E
|f(x)|pw(x)dx

) 1
p

.

If E = Rn, we write Lp,w = Lp,w(E) = Lp,w(Rn).
Next, we give some definitions used in this paper.

Definition 2.1. [12] (Ap weight) Let 1 ≤ p < ∞. For 1 < p < ∞, we define Ap as a set of all weights
w on Rn for which there exists a constant C > 0 such that(

1

|B(a, r)|

∫
B(a,r)

w(x)dx

)(
1

|B(a, r)|

∫
B(a,r)

w(x)
− 1
p−1dx

)p−1

≤ C

for all balls B(a, r) in Rn. For p = 1, we define A1 as a set of all weights w for which there exists a
constant C > 0 such that

1

|B(a, r)|

∫
B(a,r)

w(x)dx ≤ C∥w∥L∞(B(a,r)) (2.1)

for all balls B(a, r) in Rn where

∥w∥L∞(B(a,r)) = ess sup
x∈B(a,r)

w(x) = inf {M ≥ 0 : |{x ∈ B(a, r) : w(x) > M}| = 0} .

Remark 1. The last inequality (2.1) is equivalent to say that(
1

|B(a, r)|

∫
B(a,r)

w(x)dx

)
· ∥w−1∥L∞(B(a,r)) ≤ C

for all balls B(a, r) in Rn.
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Theorem 2.1. [12], [13] For 1 ≤ p <∞ and w ∈ Ap, there exists C > 0 such that

w(B)

w(E)
≤ C

(
|B|
|E|

)p
for all balls B and measurable sets E ⊆ B where w(B) =

∫
B w(x)dx.

Definition 2.2. [13], [14] Let 1 < p < q < ∞ and p′ satisfies 1/p + 1/p′ = 1. We denote Ap,q the
collection of all weight functions w satisfying(

1

|B(a, r)|

∫
B(a,r)

w(x)qdx

) 1
q
(

1

|B(a, r)|

∫
B(a,r)

w(x)−p
′
dx

) 1
p′

≤ C

for all (a, r) ∈ Rn × (0,∞) where C is a constant independet of a and r. For p = 1 and q > 1, we
denote A1,q the collection of weight functions w for which there exists a constant C > 0 such that(

1

|B(a, r)|

∫
B(a,r)

w(x)qdx

)1/q

≤ C∥w∥L∞(B(a,r))

for all (a, r) ∈ Rn × (0,∞).

Theorem 2.2. Let 1 ≤ p < q < ∞. Then w ∈ Ap,q if and only if wq ∈ Aq/p′+1. Moreover, if w ∈ Ap,q, then
wp ∈ Ap and wq ∈ Aq.

Definition 2.3. [15], [16] BMO = BMO(Rn) is set of all locally integrable functions b such that

∥b∥∗ = sup
B=B(a,r)

1

|B|

∫
B
|b(y)− bB|dy <∞

where
bB =

1

|B|

∫
B
b(y)dy.

Definition 2.4. (Fractional Integrals) For 0 < α < n, the Riesz potential or the fractional integrals
operator Iα is defined by

Iαf(x) :=

∫
Rn

f(y)

|x− y|n−α
dy, x ∈ Rn

for suitable functions f on Rn.

Definition 2.5. (Commutator) Let b a locally integrable function defined on Rn. For linear operator
T , we define the commutator of T by

[b, T ]f(x) = b(x)Tf(x)− T (bf)(x), x ∈ Rn.

We rewrite the following results for [b, T ] and [b, Iα] on weighted Lebesgue spaces as well as the
properties of b ∈ BMO. Note that the first following theorem based on the results in [17].

Theorem 2.3. [9] Let b ∈ BMO and Iα be the fractional integrals. If 0 < α < n, 1 < p < n/α, and w ∈ Ap,
then [b, Iα] is bounded from Lp,w

p to Lq,wq .

Theorem 2.4. [18] Let b ∈ BMO. Then, there is a constant C > 0 such that for all ball B = B(a, r) in Rn
and j ∈ Rn,

|b2j+1B − bB| ≤ C · (j + 1)∥b∥∗.
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Theorem 2.5. [19] Let b ∈ BMO and 1 ≤ p < ∞. Then, there is a constant C > 0 such that for all
B = B(a, r) in Rn and w ∈ Ap,(∫

B
|b(y)− bB|pw(y)dy

) 1
p

≤ C∥b∥∗w(B)
1
p .

We now present the definition of generalized weighted Morrey spaces, generalized weighted
weak Morrey spaces, and generalized weighted space of Log-type. These spaces will become the
spaces of our main interest in this paper.

Definition 2.6. (Generalized Weighted Morrey Space) Let 1 ≤ p < ∞, w ∈ Ap, and ψ be a positive
function on Rn × (0,∞). Mp,w

ψ = Mp,w
ψ (Rn) is set of all measurable functions f such that the norm

∥f∥Mp,w
ψ

is finite where

∥f∥Mp,w
ψ

= sup
a∈Rn,r>0

1

ψ(a, r)

(
1

w(B(a, r))

∫
(B(a,r))

|f(x)|pw(x)dx

)1/p

= sup
a∈Rn,r>0

1

ψ(a, r)

1

w(B(a, r))
1
p

∥f∥Lp,w(B(a,r)).

3. Some Lemmas

Before proving the main results, we provide some lemmas which are very useful for that.

Lemma 3.1. Let 1 < p <∞ and w ∈ Ap. If 0 < α < n, 1 < p < n/α, 1/q = 1/p−α/n and w ∈ Ap,q, then

1

|B(a, s)|1−
α
n

∫
B(a,s)

|f(y)|dy ≤ C2
1

wq(B(a, s))
1
q

∥f∥Lp,wp (B(a,s))

for all a ∈ Rn and r > 0, where C2 is a constant that is independent of a and r.

Proof. Let 0 < α < n, 1 < p < n/α, 1/q = 1/p− α/n and w ∈ Ap,q. By using Hölder’s inequality,

1

|B(a, s)|1−
α
n

∫
B(a,s)

|f(y)|dy =
1

|B(a, s)|1−
α
n

∫
B(a,s)

|f(y)|w(y)
w(y)

dy

≤ 1

|B(a, s)|1−
α
n

(∫
B(a,s)

|f(y)|pw(y)pdy

) 1
p
(∫

B(a,s)
w(y)−p

′
dy

) 1
p′

=
1

wq(B(a, s))
1
q

∥f∥Lp,wp (B(a,s))

(
1

|B(a, s)|

∫
B(a,s)

w(y)qdy

) 1
q

·

(
1

|B(a, s)|

∫
B(a,s)

w(y)−p
′
dy

) 1
p′

≤ C
1

wq(B(a, s))
1
q

∥f∥Lp,wp (B(a,s)).

This completes the proof of Lemma 3.1.

Lemma 3.2. Let φ a nonnegative function on Rn× (0,∞) such that the map r 7→ φ(a, r) is increasing for all
a ∈ Rn. Then, for each 1 ≤ p <∞, w ∈ Ap, and the ball B(a, r) we have

φ(a, r) ≤ Cw(B(a, r))
1
p

∫ ∞

r

1

w(B(a, s))
1
p

φ(a, s)
ds

s

where C > 0 is independent of a ∈ Rn and r > 0.
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The proof of Lemma 3.2 using the basic properties of integral as well as Theorem 2.1, so we omit
here. Next, let B be a fixed ball in Rn. For measurable function f on Rn, we write f =

∑∞
k=0 fk where

f0 = f · X2B and fk = f · X2k+1B\2kB for k > 0. We have the following lemma.

Lemma 3.3. Let 0 < α < n, 1 < p < n/α, and w ∈ Ap. Then, there is a constant D > 0 such that

∥[b, Iα]fk∥Lq,wq (B(a,r)) ≤ D∥b∥∗wq(B(a, r))
1
q

k + 3

wq(2k+1B)
1
q

∥f∥Lp,wp (2k+1B), f ∈ Lp,w
p

loc

for any k ∈ N.

Proof of Corollary 1.1. Let B = B(a, r). By the definition,

[b, Iα]fk(x) = b(x)Iαfk(x)− Iα(bfk)(x), x ∈ Rn.

It then implies that

|[b, Iα]fk(x)| ≤ |b(x)− bB||Iαfk(x)|+ |Iα([bB − b2k+1B]fk)(x)|+ |Iα([b2k+1B − b]fk)(x)|.

We shall estimate the three terms on the right side in the as inequality. For the first term, by Lemma
3.1 we have that

|b(x)− bB| · |Iαfk(x)| ≤ |b(x)− bB|
∫
Rn

|fk(x)|
|x− y|n−α

dy

≤ C|b(x)− bB|
∫
2k+1\2kB

|f(y)|
|a− y|n−α

dy

≤ C|b(x)− bB|
1

|2k+1B|1−
α
n

∫
2k+1B

|f(y)|dy

≤ C|b(x)− bB|
1

wq(2k+1B)
1
q

∥f∥Lp,wp (2k+1B).

Theorem 2.5 then implies that

∥(b− bB)Iαfk∥Lp,wp (B) ≤ C∥b∥∗wp(B)
1
p

1

wq(2k+1B)
1
q

.

For the second term, by Theorem 3.2 and 2.4, we have

|Iα([bB − b2k+1B]fk)(x)| ≤
∫
Rn

|bB − b2k+1B| · |fk(y)|
|x− y|n−α

dy

≤ C|bB − b2k+1B|
1

|2k+1B|1−
α
n

∫
2k+1B

|f(y)|dy

≤ C∥b∥∗(k + 1)
1

|2k+1B|1−
α
n

∫
2k+1B

|f(y)|dy

≤ C∥b∥∗(k + 1)
1

wq(2k+1B)
1
q

∥f∥Lp,wp (2k+1B).
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Since w ∈ Ap,q, we have w−p′ ∈ Ap′ . Hence, for the third term, Lemma 3.1, Theorem 2.5, and
Holder’s inequality then imply

|Iα([b2k+1 − b]fk)(x)|

≤
∫
Rn

|b2k+1B − b(y)| · |fk(y)|
|x− y|n−α

dy

≤ C

∫
2k+1B\2kB

|b2k+1B − b(y)| · f(y)|
|a− y|n−α

dy

≤ C
1

|2k+1B|1−
α
n

∫
2k+1B

|b2k+1B − b(y)| · |f(y)|dy

≤ 1

|2j+1B|1−
α
n

(∫
2j+1B

|f(y)|pw(y)pdy
) 1
p

·
(∫

2j+1B
|b2j+1B − b(y)|p′w(y)−p′dy

) 1
p′

≤ C
1

|2k+1B|1−
α
n

∥f∥Lp,wp (2k+1B)∥b∥∗w−p′(2k+1B)
1
p′

= C∥b∥∗
1

wp(2k+1B)
1
p

∥f∥Lp,wp (2k+1B)

1

|2k+1B|1−
α
n

(∫
2k+1B

w(y)−p
′
dy

) 1
p′
(∫

2k+1B
w(y)qdy

) 1
q

= C∥b∥∗
1

wq(2k+1B)
1
q

∥f∥Lp,wp (2k+1B)

(
1

|2k+1B|

∫
2k+1B

w(y)qdy

) 1
q
(

1

|2k+1B|

∫
2k+1B

w(y)−p
′
dy

)−p′

≤ C∥b∥∗
1

wq(2k+1B)
1
q

∥f∥Lp,wp (2k+1B)

and
∥Iα([b2k+1B − b]fk)∥Lp,wp (B) ≤ C∥b∥∗wp(B)

1
p

1

wq(2k+1B)
1
q

∥f∥Lp,wp (2k+1B).

Therefore,

∥[b, Iα]f∥Lp,wp (B) ≤ C∥b∥∗wp(B)
1
p

k + 3

wq(2k+1B)
1
q

∥f∥Lp,wp (2k+1B).

It then immediately completes the proof of Theorem 3.3.

4. Proof of the Main Results

We prove our main results in this section.

Proof of Theorem 1.1. Let a ∈ Rn and r > 0. We write

f =
∞∑
k=0

fk

where f0 = f · X2B and fk = f · X2k+1B\2kB for k ∈ N. By Theorem 2.3, we have

∥[b, Iα]f0∥Lp,wp (B) ≤ ∥[b, Iα]f0∥Lp,wp ≤ C∥b∥∗∥f0∥Lp,wp = C∥b∥∗∥f∥Lp,wp (2B).

By Lemma 3.2, we have

∥[b, Iα]f0∥Lp,wp (B) ≤ C∥b∥∗wp(2B)
1
p

∫ ∞

2r
wp(B(a, s))

− 1
p ∥f∥Lp,wp (B(a,s))

ds

s
.
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Then, the assumption implies that

∥[b, Iα]f0∥Mq,wq

ψ2

= sup
a∈Rn,r>0

1

ψ2(a, r)

1

wq(B(a, r))
1
q

∥[b, Iα]f0∥Lq,wq (B(a,r))

≤ C∥b∥∗ sup
a∈Rn,r>0

1

ψ2(a, r)

wp(B(a, 2r))
1
p

wq(B(a, r))
1
q

∫ ∞

2r
wp(B(a, s))

− 1
p ∥f∥Lp,wp (B(a,s))

ds

s

≤ C∥b∥∗ sup
a∈Rn,r>0

1

ψ2(a, r)

wq(B(a, 2r))
1
q

wq(B(a, r))
1
q

∥f∥Mp,wp

ψ1

∫ ∞

r
ψ1(a, s)

ds

s

≤ C∥b∥∗∥f∥Mp,wp

ψ2(a,r)

1

ψ2(a, r)

∫ ∞

r
ψ1(a, s)

ds

s
.

For k ∈ N, by Lemma 3.2 and 3.3 we have that

∥[b, Iα]fk∥Mq,wq

ψ2

≤ sup
a∈Rn,r>0

1

ψ2(a, r)

1

wq(B(a, r))
1
q

∥f∥Lq,wq (B(a,r))

≤ C sup
a∈Rn,r>0

1

ψ2(a, r)

1

wq(B(a, r))
1
q

∥b∥∗w(B(a, r))
1
q

k + 3

wq(2k+1B)
1
q

∥f∥Lp,wp (2k+1B)

≤ C∥b∥∗ sup
a∈Rn,r>0

1

ψ2(a, r)

k + 3

wq(2k+1B)
1
q

∥f∥Lp,wp (2k+1B)

≤ C∥b∥∗ sup
a∈Rn,r>0

k + 3

ψ2(a, r)

∫ ∞

2k+1r

1

wp(B(a, s))
1
p

∥f∥Lp,wp (B(a,s))

ds

s

≤ C∥b∥∗∥f∥Mp,wp

ψ1

k + 3

ψ2(a, r)

∫ ∞

2k+1r
ψ1(a, s)

ds

s
≤ C∥b∥∗∥f∥Mp,wp

ψ1

k + 3

2k+1
.

It the implies that

∥[b, Iα]fk∥Mq,wq

ψ2

≤ C
k + 3

2k+1
∥b∥∗∥f∥Mp,wp

ψ1

, f ∈ Mp,wp

ψ1
, k ∈ N

and
∥[b, Iα]f∥Mq,wq

ψ2

≤ C∥b∥∗∥f∥Mp,wp

ψ1

, f ∈ Mp,wp

ψ1
.

It completes the proof of Theorem 1.1.

Proof of Corollary 1.1. Suppose that there is a constant C > 0 and β > 0 such that

ψ1(a, r)s
β ≤ Cψ1(a, r)r

β, (a, r) ∈ Rn × (0,+∞).

Then, for all λ ≥ 2 and a ∈ Rn we have that∫ ∞

λr
ψ1(a, s)

ds

s
=

∫ ∞

λr
ψ1(a, s)s

β ds

sβ+1
≤ ψ1(a, r)r

β

∫
λr

ds

sβ+1
≤ ψ2(a, r)r

β 1

α

1

λβ
1

rβ
=

1

λβ
ψ1(a, r).

Then, the conclusion follows immediately from Theorem 1.1.
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