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Abstract:

Let G = (V, E) be a connected graph with vertex set V' (G) and edge set E(G). For any two vertices u
and v in G, the shortest path distance between v and v is denoted by d(u, v). f W = {wy, wa, ..., ws}
is an ordered set of vertices in the connected graph G, and v € V(G), then the representation of vertex
v with respect to W , denoted as r(v|W), is r(v|W) = (d(v,w1), d(v, w2),...,d(v,wg)). If r(v|W) is
distinct for each vertex v € V(G), then W is referred to as a resolving set for G. A resolving set
with the smallest cardinality is called the minimum resolving set, and the cardinality of this set is the
metric dimension of G, denoted by dim(G). This paper explores the metric dimension of the theta
graphs.
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1. Introduction

G = (V,E) be a connected graph, where V(G) is the set of vertices and E(G) is the set
of edges. One of the topics in graph theory discussed in this research is the metric dimension.
The concept of metric dimension was first introduced by Harary and Melter. In 2000, Char-
trand et al. [1] also explored the topic of metric dimension. The distance between two vertices
u and v is defined as the shortest path from u to v in G, denoted by d(u,v). If an ordered set
W = {wi,ws,...,wi} C V(G) is given, then the representation of a vertex v with respect to W is
r(v|W) = (d(v,wy), d(v,w2),...,d(v,wg)). If r(v|IW) is distinct for every vertex v € V(G), then W is
called a resolving set. The minimum cardinality of a resolving set is called the metric dimension of
G, denoted by dim(G).

With the advancement of science and technology, several results related to determining the metric
dimension of certain graphs have been obtained. Some of the metric dimension results include the
cycle graph [2], the fan graph [3], the wheel graph [4], the regular bipartite graph [5], the snowflake
graph [6], and the subdivided-thorn graph [7]. Additionally, some results regarding the operation of
graph addition have been obtained, such as by Suhud et al. [8], who determined the metric dimen-
sion of the windmill graph pattern K; + mKj3 for m > 2. Furthermore, Putra et al. [9] determined
the metric dimension of the graph W,, + C,, for n € {3, 4}. In the same year, Utomo and Novian [10]
obtained the metric dimension of the graph resulting from the amalgamation of n complete graphs
K, forn > 4 and m > 4, denoted by Amal{nK,,|n > 4,m > 4}. Subsequently, Riyandho et al. [11]
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obtained the metric dimension of the windmill graph pattern K +mKy for m > 2, and corona graph
by [12]. Ahmad et al. [13] examined the metric dimension of generalized Petersen graphs, offering
insights into how the structure of these graphs affects the calculation of their metric dimension. This
study highlighted that more complex graph structures require a specialized approach to determine
their minimal resolving sets. Additionally, Shahida and Sunitha (2014) expanded this research by
focusing on the metric dimension of the join of two graphs. They demonstrated that the interaction
between two graph structures can significantly alter their metric dimension [14].

The study of metric dimensions has also been extended to more specific graphs, such as Grass-
mann graphs, as discussed by Bailey and Meagher [15]. In their research, they analyzed how the
algebraic structure of Grassmann graphs influences their metric dimension, finding results that are
relevant for theoretical computation applications. Fitriani and Cahyaningtyas continued this topic
by exploring the metric dimension of dual antiprism graphs, enriching the understanding of how
changes in graph structure impact their metric dimension values [16]. Recent research by Janan and
Janan (2022) investigated the metric dimension of spider web graphs. They illustrated how certain
network patterns affect the localization capabilities within the graph, which can have implications for
studies in communication network design [17]. The metric dimension of amalgamation theta graph
given by Wellyanti et al. [18].

Beyond the classical metric dimension, other variations have emerged to address more specific
graph characteristics and requirements, further enriching the study of graph theory. One such vari-
ation is the edge metric dimension [19], which focuses on distinguishing edges rather than vertices,
offering insights into the connectivity and traversal properties of a graph. Another extension is the
k-metric dimension [20, 21], which generalizes the classic concept by requiring that each pair of ver-
tices is distinguished by at least k vertices, providing a deeper understanding of the graph’s structure
and robustness. Moreover, the concept of the mixed metric dimension has also been explored. This
variation combines aspects of both the vertex and edge metric dimensions [22], making it applicable
to problems where both vertices and edges play critical roles in the graph’s configuration. These
variations of metric dimension have opened up new avenues for research, enabling more refined
approaches to problems in areas like network security, navigation, and communication, where un-
derstanding the subtle structure of a graph is crucial.

Graph amalgamation is an operation on graphs. Let {G1,G>,..., G} fori € {1,2,...,t},t > 2,
be a finite collection of nontrivial connected graphs, and let vy ; be a vertex from graph G; called
a terminal vertex. The amalgamated graph, denoted by Amal{G;,vo;}, is a graph formed from
G1,Ga, ..., G, by identifying the terminal vertices from {G1,Gs,...,Gt}, such that vo1 = vo2 =
.-+ = vg . Simanjuntak et al. [23] found a theorem relating the metric dimension of a graph G to the
amalgamation of the graph, as follows.

Theorem 1.1. For m € N, m > 2, let {G1,Gs2,...,Gy} be a collection of arbitrary nontrivial connected
graphs, and each G has a terminal vertex aj, for 1 < j < m. Let ¢ be a new vertex resulting from the
identification of all terminal vertices. If G = Amal{G1, G2, ...,Gpn,c}, then

D dim(Gi) —m < dim(G) <> dim(G;) +m — 1
=1 =1

The Theta graph, denoted as ©(4,n), is a graph formed by performing a vertex amalgamation
operation on the vertices v;; for 1 < k < 4 into a new vertex named a. Next, perform a vertex
amalgamation operation on the vertices vy, for 1 < k < 4 into a new vertex named b. An illustration
of the graphs ©(4,n) is given in Figure 1.1.
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Figure 1.1: Theta (4,n) Graph

2. Research Method

The procedure for determining the metric dimension of the amalgamation graph involves several
steps. Let H be amalgamated graph, to establish that dim(H) = k — 1, we will set both upper
and lower bounds for the metric dimension of graph H. The upper bound dim(H) is found by
constructing a resolving set W with |W| = k — 1, ensuring that every vertex v in V(H) has a unique
representation. Conversely, the lower bound dim(H) is established by showing that for any resolving
set W* with |W*| = k—2, there will always be at least two vertices that share the same representation.

3. Results and Discussion
3.1. Metric Dimension of Theta Graph

The following theorem provides the metric dimension of the Theta graph, denoted by ©(4,n).
Theorem 3.1. Let n be an integer, with n > 3. If ©(4,n) is a Theta graph, then dim(©(4,n)) = 3.

Proof. Given a graph ©(4,n) with the vertex set V(0(4,n)) = {a,b} U{vg; | 1 <k < 4,2 <1 <
n — 1}. It will be shown that dim(©(4,n)) = 3. Without loss of generality, choose the set W =
{vi2,v22,u33} € V(O(4,n)). It will be proven that W = {v; 2,v22,v33} is a resolving set. Consider
the representation of all vertices V(©(4, n)) as follows.

1. The representation of vertex a with respect to W is obtained as follows:

r(a|W)=(1,1,2).

2. The representation of vertex v; j, foreach 1 <i < 4,2 < j < n — 1 with respect to W, is obtained as
follows:
7“(’()172 | W) = (0, 2,3),
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r(vea | W) =1(2,0,3),

r(vso | W) =(2,2,1),

r(vae | W) =(2,2,3),

r(vis | W) =(1,3,4),

r(ves | W) = (3,1,4),

r(vss | W) =(3,3,0),
r(ip—2 | W)=Mnm—-4n—-2,n-1),
r(vop—2 | W)=(n—-2,n—-4,n-1),
r(vgp—2 | W) =(n—2,n—2,n—-75),
r(vap—2 | W)=(Mn—-2,n—-2,n—-1),
r(vip—1 | W)=(Mn-3,n—-1,n-—2),
r(van-1 | W)=(n—-1,n—-3,n—-2),
r(vgp—1 | W)=(n—-1,n—-1,n—4)

3. The representation of vertex b with respect to IV is obtained as follows:
r(b| W)= (n—-2,n—2,n—3).

Since each vertex in ©(n) has a different representation, IV is a resolving set, and consequently
dim(©(4,n)) < 3. Next, it will be shown that for any W* with [W*| = 2, W* is not a resolving set.
That is, there will always be at least two vertices with the same representation with respect to W*.
Consider the following cases.

Let W* = {a, 5}.

Case 1: If W* = {«, 8}, then a € {a,b}, B € {v;; | 1 <i < 4,2 <j <n—1}. There will always
exist a point v, ,, with 1 <r < 4,7 # 14,2 < s < n — 1, that has the same representation as point v, ,,
withl <z <4,z #ri,2 <y <n-—1y = s Without loss of generality, let W* = {a,v; 2}, then the
representations of points v3 5 and v3 o with respect to W* are as follows:

r(vg2) = (1,2) = r(v32).

Case 2: If W* = {a, B}, thena € {v;j |1 <i<4,2<j<n—-1},8e{v,; | 1<k<4k#0,2<
j < n—1}. Consider the following subcases:

Subcase 2.1: n = 3. Choose any point from the set of points v; ; and vy, ;, there will always be a
point with the same representation on a and b.

Subcase 2.2: n > 3, niseven. 1. Let W* = {v; j, vk,j}, with j < 5. There will always exist a point
Vg, With1 <2 < 4,2 #14,k,2 <y < n— 1, that has the same representation as point b. 2. Let W* =
{vij, v}, with j > . There will always exist a point v, ,, with1 <2 < 4,2 #4,k,2<y <n-1,
that has the same representation as point a.

Subcase 2.3: n > 3, nis odd. 1. Let W* = {v;;,v;}, with j < [5]. There will always exist a
point v, with 1 <z < 4,2 # i,k,2 <y < n — 1, that has the same representation as point b. 2.
Let W* = {v;;,vr;}, with j = [5]. There will always exist a point with the same representation
as points a and b. 3. Let W* = {v;;, vy ;}, with j > [§]. There will always exist a point v, ,, with
1<z <4,z#1i,k,2 <y <n—1,that has the same representation as point a.
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Case3: If W* = {a,8}, thena e {v;; |1 <i<,2<j<n—-1},fe{vyy |l <z<4z#i2<
y <n—1,y # j}. Without loss of generality, let W* = {v; 2,v2 3}, then the representations of points
{vin—1,v3n—3} with respect to W* are as follows:

r(vip—1 | W)=(n-3n—-3)=r(vsp_3|W).

Case 4: If W* = {a,f}, thena € {v;; |1 <i<32<j<n—-1},e{vr|l1<i<42<
k <n—1,k # j}. There will always exist a point v, ;, with 1 < r < 4,7 # 4,2 < s < n — 1, that has
the same representation as point v, ,, with 1 <2 < 3,2 # r,4,2 <y < n — 1,y = s. Without loss of
generality, let W* = {v; 2, v1 3}, then the representations of points {vs 2, v3 2} with respect to W* are:

7“(’1)272 ‘ W) = (2,3) = T(Ug,g | W)

From the four cases above, since there are points with the same representation with respect to
W*, it is proven that W* is not a resolving set for the Theta graph. Consequently, dim(©(4,n)) > 3.
Therefore, dim(©(4,n)) = 3. O

3.2. Time Complexity

The time complexity for determining the metric dimension of a theta graph involves analyzing
how efficiently one can identify a resolving set for the graph. A theta graph, typically consisting
of multiple paths with standard endpoints, may allow more efficient determination of its metric
dimension than general graphs due to its structured nature. The complexity depends on the number
of vertices and edges, and specialized algorithms can sometimes achieve polynomial time solutions
for certain classes of graphs, like trees or specific types of theta graphs. Here is the running time from
the program of metric dimensin of theta graph ©(4, n).

Table 3.1: The Metric Dimension and Running Time

n  dim(©(4,n)) Running Time

5 3 3956.31 ms
10 3 8400.71 ms
15 3 18842.26 ms
20 3 54948.52 ms
25 3 129569.02 ms
30 3 293652.51 ms

4. Conclusion

For a theta graph ©(4, n), where,n > 3, the metric dimension is consistently 3. This result implies
that regardless of how long the paths are (as long as there are at least three paths), only three vertices
are needed to form a resolving set. This is due to the structure of the graph, where the three chosen
vertices can uniquely determine the distances to any other vertex, effectively distinguishing all ver-
tices based on their distance vectors. The problem is known to be NP-hard, meaning that no known
polynomial-time algorithm can solve it for all graph instances. However, for future research, consider
exploring the relationship between the metric dimension of more complex theta graphs (e.g., O(k, n)
for k > 4) and how the number of paths affects the resolving set size.
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