

ARTIKEL PENELITIAN

Klasterisasi Produktifitas Daerah di Jawa Tengah Berdasarkan Ketenagakerjaan Menggunakan K-Means dan Average Linkage

Ahmad Firqi Nashrullah^{1,*}, Rivaldi Dwi Mahardhika¹, Nur Rahmat Rusdiyanto¹, Shindi Shella May Wara¹, Wahyu Syaifullah Jauharis Saputra¹

¹Program Studi Sains Data, Universitas Pembangunan Nasional Veteran Jawa Timur, Indonesia *Penulis korespondensi: 23083010009@student.upnjatim.ac.id

Diterima: 6 Juni 2025; Direvisi: 28 Agustus 2025; Disetujui: 2 September 2025; Dipublikasi:1 November 2025.

Abstrak:

Penelitian ini menggunakan metode *K-Means* dan *Agglomerative Clustering (Average Linkage)* untuk mengelompokkan wilayah berdasarkan variabel jumlah penduduk, tingkat pengangguran, dan indikator pendukung lainnya. Data dinormalisasi dan dievaluasi dengan metrik *Silhouette Score*, menghasilkan tiga klaster terbaik. *Average Linkage* (0,360) menunjukkan skor lebih unggul dibanding *K-Means* (0,263). Hasil *Average Linkage* menunjukkan klaster 1 berkarakteristik produktivitas stabil dan rendah pengangguran, klaster 2 hanya berupa Kota Semarang dengan IPM dan upah tertinggi, sedangkan klaster 3 menampilkan wilayah tertinggal dengan pengangguran dan upah rendah. Klasterisasi ini sangat bermanfaat untuk mendukung kebijakan pembangunan daerah berbasis data yang lebih terarah.

Kata Kunci: Average Linkage, Jawa Tengah, Ketenagakerjaan, Klaster, K-Means, Produktivitas

Abstract:

This study employs K-Means and Agglomerative Clustering (Average Linkage) to group regions based on variables such as the number of residents, unemployment rate, and other supporting indicators. The data are normalized and evaluated using the Silhouette Score metric, yielding three optimal clusters. Average Linkage (0.360) outperforms K-Means (0.263). The Average Linkage results indicate that cluster 1 is characterized by stable productivity and low unemployment, cluster 2 consists solely of Semarang City with the highest Human Development Index and wages, and cluster 3 comprises underdeveloped areas with high unemployment and low wages. This clustering is highly beneficial for supporting more targeted data-driven regional development policies.

Keywords: Average Linkage, Central Java, Employment, Cluster, K-Means, Productivity

1. Pendahuluan

Provinsi Jawa Tengah merupakan wilayah yang strategis di Pulau Jawa yang berkontribusi sekitar 14,26% dari total angkatan kerja nasional [1] dan provinsi terpadat ketiga di Indonesia dengan populasi 37,5 juta jiwa pada tahun 2023 [2]. Karakteristik wilayah yang beragam dengan daerah industri seperti Kota Semarang dan Kabupaten Kendal hingga Kawasan agraris seperti

Kabupaten Pati dan Wonosobo. Keberagaman ini menyebabkan perbedaan signifikan dalam produktivitas antar daerah yang tampak melalui ketimpangan pada Tingkat Pengangguran Terbuka (TPT), Tingkat Partisipasi Angkatan Kerja (TPAK), serta perbedaan Upah/Gaji Bersih Bulanan antar kabupaten/kota [1, 3]. Selain itu, Badan Pusat Statistik menegaskan bahwa peningkatan kualitas sumber daya manusia (IPM) akan meningkatkan produktivitas tenaga kerja dan daya saing daerah [4]. Dengan potensi sumber daya manusia yang besar dan beragam, analisis produktivitas di Jawa Tengah sangat relevan untuk menilai disparitas pembangunan dan pertumbuhan ekonomi wilayah.

Data Sakernas Jawa Tengah menunjukkan bahwa Tingkat Partisipasi Angkatan Kerja (TPAK) terus mengalami peningkatan dari tahun ke tahun. Selain itu, Tingkat Pengangguran Terbuka (TPT) cenderung lebih tinggi di wilayah perkotaan dibandingkan perdesaan. Fakta-fakta ini mengindikasikan adanya dinamika ketenagakerjaan yang berpotensi memengaruhi produktivitas daerah. Hal ini memperkuat pentingnya analisis hubungan antara variabel ketenagakerjaan seperti jumlah penduduk, pengangguran, partisipasi kerja, jam kerja, upah, serta Indikator Pembangunan Manusia (IPM) dengan tingkat produktivitas suatu wilayah [5]. Tingkat Kesempatan Kerja (TKK) menunjukkan ketersediaan lapangan pekerjaan relatif terhadap populasi. Di sisi lain, Indeks Pembangunan Manusia (IPM) dan pengeluaran per kapita menggambarkan kualitas hidup. Temuan dari studi nasional menunjukkan bahwa meningkatnya Tingkat Pengangguran Terbuka (TPT) berdampak negatif secara signifikan terhadap produktivitas tenaga kerja, sementara peningkatan upah justru berkontribusi positif terhadap peningkatan produktivitas [6, 7]. Pengeluaran per kapita yang rendah cenderung memiliki jumlah angkatan kerja, dan nilai investasi yang lebih kecil pula. Kondisi ini berdampak pada rendahnya kualitas sumber daya kerja dan produktivitas daerah yang kemudian berkontribusi terhadap rendahnya Indeks Pembangunan Manusia (IPM) pada penelitian data panel di Nusa Tenggara Timur [8]. Temuan dari data Sakernas yang didukung oleh studistudi terdahulu menunjukkan bahwa variabel ketenagakerjaan seperti penduduk, pengangguran, angkatan kerja, jam kerja, upah, pengeluaran per kapita, dan Indeks Pembangunan Manusia (IPM) memiliki hubungan signifikan dengan tingkat produktivitas daerah.

Pemilihan kedua metode ini didukung oleh beberapa studi yang berhasil menerapkannya pada data tenaga kerja dan indikator pembangunan. Metode K-Means dipilih karena kemampuannya mempartisi data menjadi sejumlah (k) klaster berdasarkan jarak ke centroid, sehingga cocok untuk dataset berukuran besar dan relatif cepat dalam perhitungan [9–11]. Sementara itu, Average Linkage sebagai metode klasterisasi hirarkis aglomeratif tidak mengharuskan penentuan jumlah klaster di muka serta menghasilkan dendrogram yang memudahkan visualisasi struktur hierarki klaster, cocok untuk mengeksplorasi bentuk dan ukuran klaster yang beragam [9]. Dari segi validitas, Average Linkage juga menunjukkan kinerja lebih baik dalam konteks pengelompokan kemiskinan di Jawa Tengah, dengan nilai Silhouette Coefficient sebesar 0,35 dibandingkan K-Means sebesar 0,20 [9]. Di tingkat nasional, studi serupa juga menemukan bahwa Average Linkage menghasilkan rasio variansi intra/antar-klaster (v) yang lebih kecil (0,083) dibandingkan K-Means (0,289) ketika mengelompokkan 34 provinsi Indonesia berdasarkan indikator kesejahteraan, sehingga klaster yang dihasilkan lebih terpisah secara statistik [12]. Dengan membandingkan kedua metode, penelitian ini diharapkan memperoleh klaster yang lebih valid dan informatif dalam memetakan produktivitas daerah berdasarkan karakteristik ketenagakerjaan. Kontribusi kajian ini terletak pada pemetaan komparatif produktivitas daerah berbasis karakteristik ketenagakerjaan, yang dapat memperkuat rekomendasi kebijakan pengembangan tenagakerja dan pemerataan pembangunan di Jawa Tengah.

2. Metode Penelitian

2.1. Sumber Data dan Variabel Penelitian

Sumber data pada penelitian ini berasal dari data sekunder yang diperoleh dari Badan Pusat Statistik (BPS) Provinsi Jawa Tengah [1, 3]. Data yang digunakan merupakan data numerik yang

terdiri dari 9 variabel dan objek pengamatan adalah 35 kabupaten/kota di Provinsi Jawa Tengah. Berikut merupakan keterangan dari variabel pada Tabel 2.1 yang digunakan dalam penelitian ini:

Tabel 2.1: Statistik Deskriptif Variabel Penelitian

Kode Variabel	Nama Variabel	Satuan/ Definisi
X_1	Jumlah Penduduk	Jumlah total penduduk di setiap kabupaten/kota (jiwa)
X_2	Tingkat Pengangguran Terbuka (TPT)	Persentase penduduk usia kerja yang aktif mencari kerja namun belum bekerja (%)
X_3	Tingkat Partisipasi Angkatan Kerja (TPAK)	Persentase penduduk usia kerja yang aktif secara ekonomi (bekerja atau mencari kerja) (%)
X_4	Jumlah Penduduk Bukan Angkatan Kerja	Proporsi (%) terhadap total penduduk usia kerja yang tidak termasuk angkatan kerja (pelajar, ibu rumah tangga, dll)
X_5	Tingkat Kesempatan Kerja (TKK)	Persentase penduduk angkatan kerja yang berhasil memperoleh pekerjaan (%)
X_6	Indeks Pembangunan Manusia (IPM)	Indeks komposit pembangunan manusia dalam dimensi pendidikan, kesehatan, dan standar hidup
X_7	Pengeluaran per Kapita	Rata-rata pengeluaran penduduk per orang dalam setahun (rupiah/orang/tahun)
X_8	Jam Kerja Rata-Rata	Rata-rata jam kerja penduduk yang bekerja dalam seminggu (jam/minggu)
X_9	Rata-Rata Upah/Gaji Bersih per Bulan	Rata-rata pendapatan bersih bulanan penduduk yang bekerja (rupiah)

2.2. Proses Analisis Data

Proses analisis data dalam penelitian ini dilakukan dengan menggunakan pendekatan analisis cluster, khususnya algoritma *K-Means Clustering* dan *Hierarchical Clustering* (*Average Linkage*). Tahapan-tahapan analisis data sebagai berikut:

- 1. Pengumpulan, pengambilan, persiapan dan praproses data, dilakukan dengan menggabungkan data dari data sekunder Badan Pusat Statistik (BPS) Provinsi Jawa Tengah.
- 2. Penentuan Jumlah Klaster Optimal. Untuk menentukan jumlah klaster (k) yang optimal, dilakukan iterasi nilai k dari 3 hingga 6 dan dihitung metrik evaluasi sebagai berikut:
 - (i) SSE (*Sum of Squared Errors*): untuk melihat seberapa baik data dipetakan ke dalam klaster, khususnya digunakan pada metode Elbow.
 - (ii) Silhoutte Score: untuk megukur seberapa mirip suatu data dengan klaster miliknya dibandingkan dengan klaster lainnya.
- 3. *K-Means* merupakan algoritma klastering yang paling populer dan sering digunakan dalam berbagai aplikasi seperti analisis data, pengenalan pola, dan pengelompokan data. Algoritma ini bekerja dengan cara membagi suatu dataset menjadi k kelompok berdasarkan jarak antara objek-objek dalam dataset tersebut [13]. Penerapan *K-Means Clustering*, setelah klaster optimal ditentukan, dilakukan penerapan algoritma *K-Means* pada data yang telah dinormalisiasi. Setiap kabupaten/kota kemudian diklasifikasikan ke dalam salah satu klaster berdasarkan kesamaan profil indikator sosial ekonomi dan ketenagakerjaan. Secara matematis, algoritma *K-Means* menggunakan rumus:

$$\sum_{k=1}^{K} \sum_{x_i \in k} |x_i - \mu_k|^2 \tag{2.2}$$

Keterangan:

K : jumlah klaster x_i : data ke-i

 π_k : himpunan data yang termasuk dalam klaster k

 μ_i : centroid klaster k

 $|x_i - \mu_k|^2$: jarak kuadrat Euclidean antara data x_i dan centroid μ_k

- 4. Metode average linkage merupakan metode yang dilakukan dengan mengelompokkan data berdasarkan jarak rata-rata antar keseluruhan data [14]. Hasil pengelompokan divisualisasikan menggunakan dendrogram untuk mengamati struktur hierarki dan hubungan antar kabupaten/kota, serta menentukan jumlah klaster optimal berdasarkan pemotongan pada dendrogram tersebut.
- 5. Visualisasi dan interpretasi hasil kluster, hasil kluster dari kedua metode tersebut divisualisasikan dengan scatterplot, pairplot dan dendogram.
- 6. Evaluasi dan Kesimpulan.

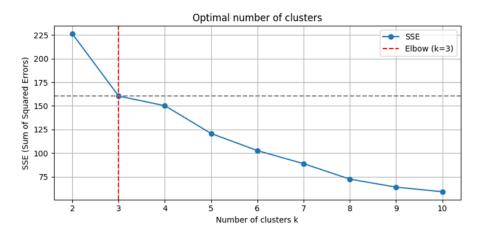
3. Hasil dan Pembahasan

3.1. Deskripsi Statistik Data Awal

Penelitian ini menggunakan data ketenagakerjaan dari kabupaten/kota yang ada di Provinsi Jawa Tengah yang mencakup beberapa indikator, diantaranya jumlah penduduk, tingkat pengangguran terbuka (TPT), tingkat partisipasi angkatan kerja, jam kerja rata-rata dalam seminggu, dll. Sebelum dilakukan proses klasterisasi, data terlebih dahulu dilakukan normalisasi untuk memastikan setiap variabel memiliki skala yang sebanding.

Data kemudian dianalisis menggunakan dua pendekatan klasterisasi yaitu *K-Means* dan *Average Linkage (Agglomerative Hierarchical Clustering)*. Evaluasi terhadap masing-masing klaster dilakukan menggunakan satu metrik utama yaitu *silhoutte score*.

Analisis deskriptif terhadap sembilan variabel ketenagakerjaan dan pembangunan digunakan untuk mmemahami karakteristik data awal sebelum dilakukan klasterisasi. Pada Tabel 3.1 menyajikan data nilai rata-rata dan variansi pada setiap variabel yang digunakan. Jumlah penduduk (X_1) memiliki rata-rata sebesar 1.072.606 jiwa per kabupaten/kota dengan variansi cukup besar, yang menunjukkan bahwa sebaran penduduk relatif merata di seluruh wilayah. Tingkat pengangguran terbuka (X_2) mencatat rata-rata 4,86%. Tingkat partisipasi angkatan kerja (TPAK) (X_3) menunjukkan nilai rata-rata sebesar 72,11%, yang mencerminkan konsistensi partisipasi kerja antarwilayah.


Variabel Jumlah Penduduk Bukan Angkatan Kerja (X_4) memiliki rata-rata proporsi sebesar 0,24 (24%) dari total penduduk usia kerja, yang mengindikasikan adanya variasi signifikan antarwilayah dalam jumlah penduduk yang tidak aktif secara ekonomi. Tingkat kesempatan kerja (TKK) (X_5) tercatat tinggi, yaitu 95,14% yang mencerminkan ketimpangan kesempatan kerja di wilayah tertentu. Indeks pembangunan manusia (IPM) (X_6) memiliki rata-rata 74,17 menunjukkan bahwa sebagian besar wilayah memiliki kualitas hidup yang cukup baik. Selanjutnya, pengeluaran per kapita (X_7) tercatat rata-rata sebesar Rp12.024.428,57 dengan variansi tinggi, mencerminkan adanya ketimpangan daya beli antarwilayah. Jam kerja rata-rata per minggu (X_8) berada pada angka 37,20 jam dengan variansi kecil, mengindikasikan bahwa beban kerja mingguan relatif stabil di seluruh daerah. Terakhir, rata-rata upah/gaji bersih per bulan (X_9) sebesar Rp2.287.612,00 yang menunjukkan adanya ketimpangan pendapatan yang mungkin disebabkan oleh perbedaan struktur ekonomi antarwilayah.

Tabel 3.1: Statistik Deskriptif Variabel Penelitian

Variabel	Keterangan	Rata-Rata	Variansi	Satuan
$\overline{X_1}$	Jumlah Penduduk	1.072.606	470.425,14	Jiwa
X_2	Tingkat Pengangguran Terbuka (TPT)	4,86	1,69	Persen (%)
X_3	Tingkat Partisipasi Angkatan Kerja (TPAK)	72,11	4,13	Persen (%)
X_4	Jumlah Penduduk Bukan Angkatan Kerja	0,24	0,13	Proporsi (%) terhadap total penduduk usia kerja
X_5	Tingkat Kesempatan Kerja (TKK)	95,14	1,69	Persen (%)
X_6	Indeks Pembangunan Manusia (IPM)	74,17	4,42	Indeks (0-100)
X_7	Pengeluaran per Kapita (Orang/Tahun)	12.024.428,57	1.796.659,93	Rp/Orang/Tahun
X_8	Jam Kerja Rata-Rata (Seminggu)	37,20	1,88	Jam/Minggu
X_9	Rata-Rata Upah/Gaji Bersih Sebulan	2.287.612,00	329.487,48	Rp/Bulan

3.2. Analisis Klastering dengan K-Means Clustering

Menentukan jumlah klaster optimal pada metode K-Means Clustering merupakan tahap penting dalam analisis klasterisasi. Dalam analisis ini digunakan pendekatan metode Elbow, di mana grafik nilai SSE (Sum of Squared Errors) diplot terhadap jumlah klaster dari 2 hingga 10. Penurunan tajam pada kurva SSE mengindikasikan jumlah klaster yang optimal. Hasil dari metode Elbow menunjukan adanya perubahan signifikan pada k=3 yang dapat dilihat pada Gambar 3.1.

Gambar 3.1: Klaster Optimal Berdasarkan Pendekatan metode Elbow pada metode K-Means Clustering

Kemudian diperkuat juga oleh perhitungan indeks Silhoutte dimana indeks Silhoutte mengukur konsistensi data dalam klaster dan berkisar dari -1 hingga 1. Semakin tinggi nilai dari indeks, semakin baik objek dalam satu klaster memiliki kemiripan internal dan perbedaan terhadap klaster lain seperti yang ditunjukan pada Tabel 3.2.

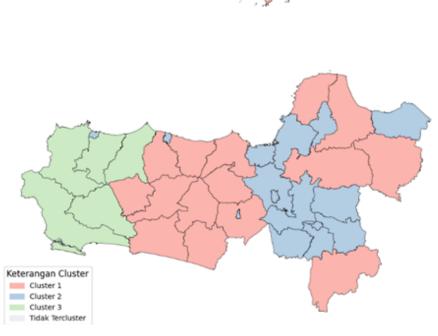
Hasil pemetaan pada Gambar 3.2 menunjukkan klaster kabupaten/kota di Provinsi Jawa Tengah menggunakan *K-Means Clustering* dengan jumlah klaster (k=3). Berdasarkan nilai evaluasi model *Silhouette Score*, metode *K-Means Clustering* memiliki nilai evaluasi (0,263). Bisa disimpulkan bahwa *K-Means Clustering* optimal dalam mengelompokkan karakteristik wilayah berdasarkan indikator produktivitas dan ketenagakerjaan, sehingga digunakan sebagai dasar interpretasi akhir.

Tabel 3.2: Klaster Optimal Berdasarkan Indeks Silhouette dengan metode K-Means Clustering

Jumlah Klaster	Silhoutte Score
3	0,262
4	0,261
5	0,246
6	0,229

Berikut merupakan indikator rata-rata per klasternya bisa dilihat pada Tabel 3.3 dan persebaran kabupaten/kota pada Gambar 3.2 dan Tabel 3.4.

Berdasarkan Tabel 3.3, klaster 1 terdiri dari kabupaten dan kota seperti Purbalingga, Banjarnegara, Kebumen, Purworejo, Wonosobo, Magelang, Wonogiri, Grobogan, Blora, Pati, Jepara, Temanggung, Kendal, Batang, Pekalongan. Klaster ini memiliki Tingkat Pengangguran Terbuka (TPT) rendah (4,30%) dan Tingkat Partisipasi Angkatan Kerja (TPAK) tertinggi (75,10%), yang menandakan bahwa mayoritas penduduk usia kerja aktif dalam kegiatan produktif. Tingkat Kesempatan Kerja (TKK) mencapai (95,70%), juga menegaskan bahwa hampir seluruh angkatan kerja terserap. Meskipun IPM (71,61) dan pengeluaran per kapita Rp 10,88 juta per tahun masih lebih rendah dibandingkan klaster lain, partisipasi tenaga kerja yang tinggi tetap menjadi ciri khas. Jam kerja mingguan rata-rata (36,95 jam) dan upah/gaji bulanan Rp 2.103.500 menunjukkan kondisi tenaga kerja yang cukup stabil. Pada Gambar 3.2, wilayah klaster 1 (berwarna merah muda) tersebar di berbagai bagian Jawa Tengah, merepresentasikan kelompok daerah dengan keterlibatan angkatan kerja yang tinggi, meski kualitas kesejahteraannya masih perlu ditingkatkan.


Klaster 2 terdiri dari Boyolali, Klaten, Sukoharjo, Karanganyar, Sragen, Rembang, Kudus, Demak, Semarang, Kota Magelang, Kota Surakarta, Kota Salatiga, Kota Semarang, Kota Pekalongan, Kota Tegal. Klaster ini ditandai dengan TPT relatif rendah (4,44%) dan TPAK moderat (70,74%), namun yang menonjol adalah IPM tertinggi (77,98), pengeluaran per kapita Rp 13,49 juta per tahun, serta upah bulanan tertinggi Rp 2.505.763. Rata-rata jam kerja mingguan juga paling tinggi (38,29 jam), menunjukkan beban kerja lebih besar. Secara umum, klaster ini mencerminkan wilayah dengan produktivitas tenaga kerja tinggi dan tingkat kesejahteraan lebih baik, terutama di kawasan perkotaan. Pada Gambar 3.2, klaster 2 (berwarna biru) terkonsentrasi di wilayah tengah dan timur, termasuk Kota Semarang sebagai pusat produktivitas utama di Jawa Tengah.

Sementara itu, klaster 3 mencakup Cilacap, Banyumas, Pemalang, Tegal, dan Brebes. Klaster ini menunjukkan TPT tertinggi (7,84%) dan TPAK terendah (66,90%), artinya hanya sekitar dua pertiga penduduk usia kerja yang terlibat aktivitas produktif, hal ini menjadi indikator bahwa sebagian besar tenaga kerja mengalami kesulitan dalam mendapatkan dan mempertahankan pekerjaan. TKK sebesar 92,16% menjadi yang terendah di antara klaster, sementara IPM (70,38) dan pengeluaran per kapita Rp 11,00 juta per tahun juga berada di bawah klaster 2. Rata-rata upah Rp 2.185.494 dan jam kerja mingguan 37,68 jam tidak cukup mengangkat produktivitas wilayah ini. Pada Gambar 3.2, klaster 3 (berwarna hijau muda) tampak terkonsentrasi di daerah selatan dan barat Jawa Tengah, menandakan bahwa daerah dengan tantangan besar dalam penciptaan lapangan kerja dan peningkatan kualitas sumber daya manusia.

Tabel 3.3: Statistik Deskriptif Klaster Variabel Penelitian

Variabel	Klaster			Satuan
	1	2	3	-
Jumlah Penduduk	1.081.633	817.253	1.811.580	Jiwa
Tingkat Pengangguran	4,30	4,44	7,84	Persen (%)
Terbuka (TPT) Tingkat Partisipasi	75,10	70,74	66,90	Persen (%)
Angkatan Kerja (TPAK)	,	/	00,50	, ,
Jumlah Bukan Angkatan Kerja	0,21	0,19	0,47	Proporsi (%) terhadap total penduduk usia kerja
Tingkat Kesempatan Kerja (TKK)	95,70	95,56	92,16	Persen (%)
Indeks Pembangunan Manusia (IPM)	71,61	77,98	70,38	Indeks (0–100)
Pengeluaran per Kapita (Orang/Tahun)	10.888.800,00	13.498.800,00	11.008.200,00	Rp/Orang/Tahun
Jam Kerja Rata-Rata (Seminggu)	35,95	38,29	37,68	Jam/Minggu
Rata-Rata Upah/Gaji Bersih Sebulan	2.103.500,00	2.505.763,33	2.185.494,00	Rp/Bulan

Clustering KMeans (k=3)

Gambar 3.2: Visualisasi Hasil Pemetaan K-Means Clustering

Tabel 3.4: Daftar Kabupaten/Kota per Klaster

Metode Klastering	Klaster	Kabupaten/Kota
	Klaster 1 (Merah Muda)	Purbalingga, Banjarnegara, Kebumen, Purworejo,
K-Means Clustering		Wonosobo, Magelang Wonogiri, Grobogan, Blora, Pati,
	(wician wiada)	Jepara, Temanggung, Kendal, Batang, Pekalongan
	Vlaston 2	Boyolali, Klaten, Sukoharjo, Karanganyar, Sragen, Rembang
Klaster 2 (Biru)		Kudus, Demak, Semarang, Kota Magelang, Kota Surakarta,
	(Diru)	Kota Salatiga, Kota Semarang, Kota Pekalongan, Kota Tegal
	Klaster 3 (Hijau Muda)	Cilacap, Banyumas, Pemalang, Tegal, Brebes

3.3. Analisis Klastering dengan Average Linkage

Berdasarkan Tabel 3.5, terlihat bahwa nilai *sillhoutte score* tertinggi diperoleh pada jumlah klaster 3 dengan nilai evaluasi (0,360). Nilai ini lebih tinggi dibandingkan dengan jumlah klaster lainnya, sehingga dapat disimpulkan bahwa jumlah klaster paling optimal adalah sebanyak 3 klaster.

Tabel 3.5: Klaster Optimal Berdasarkan Indeks Silhouette dengan metode Average Linkage

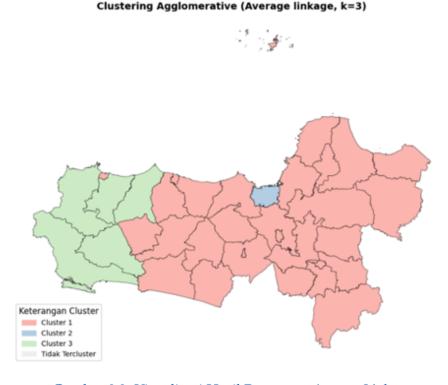
Jumlah Klaster	Silhoutte Score
3	0,360
4	0,334
5	0,250
6	0,218

Hasil pemetaan pada Gambar 3.3 klaster kabupaten/kota di Provinsi Jawa Tengah menggunakan *Agglomerative Clustering (Average Linkage)* dengan jumlah klaster (k=3). Berdasarkan nilai evaluasi model *Silhouette Score*, metode *Average Linkage* memiliki nilai evaluasi (0,360). Bisa disimpulkan bahwa *Average Linkage* optimal dalam mengelompokkan karakteristik wilayah berdasarkan indikator produktivitas dan ketenagakerjaan, sehingga digunakan sebagai dasar interpretasi akhir. Berikut merupakan indikator rata-rata per klasternya bisa dilihat pada Tabel 3.6 dan persebaran kabupaten/kota pada Gambar 3.3 dan Tabel 3.7.

Berdasarkan Tabel 3.7, klaster 1 terdiri dari kabupaten dan kota seperti Purbalingga, Banjarnegara, Kebumen, Purworejo, Wonosobo, Magelang, Boyolali, Klaten, Sukoharjo, Wonogiri, Karanganyar, Sragen, Grobogan, Blora, Rembang, Pati, Kudus, Jepara, Demak, Semarang, Temanggung, Kendal, Batang, Pekalongan, Kota Magelang, Kota Surakarta, Kota Salatiga, Kota Pekalongan, dan Kota Tegal. Klaster ini memiliki Tingkat Pengangguran Terbuka (TPT) terendah (4,31%) dan Tingkat Partisipasi Angkatan Kerja (TPAK) tertinggi (73,10%), yang menandakan bahwa hampir tiga dari empat penduduk usia kerja aktif terlibat dalam kegiatan produktif. Tingkat Kesempatan Kerja (TKK) mencapai 95,69%, mengindikasikan bahwa hampir seluruh angkatan kerja memiliki akses cukup luas ke lapangan pekerjaan. Meskipun rata-rata jam kerja mingguan (36,99 jam) lebih pendek dibanding klaster lain, upah/gaji bersih bulanan rata-rata sebesar Rp 2.263.234 relatif stabil, dan Indeks Pembangunan Manusia (IPM) sebesar 74,46 mendukung gambaran bahwa produktivitas tenaga kerja di wilayah ini cukup baik tanpa harus mengorbankan durasi kerja yang berlebihan. Pada Gambar 3.3, wilayah klaster 1 (berwarna hijau muda) tersebar merata, menandakan konsistensi kinerja ketenagakerjaan di berbagai bagian Jawa Tengah.

Klaster 2, yang hanya diwakili oleh Kota Semarang, memiliki TPT 5,99% dan TPAK 69,42%, artinya sekitar tujuh dari sepuluh penduduk usia kerja aktif mencari atau sudah bekerja. Nilai TKK 94,01% menunjukkan akses lapangan kerja yang masih sangat luas, sedangkan IPM sebesar 84,43 serta upah/gaji bersih bulanan tertinggi (Rp 3.505.160) menggambarkan bahwa efektivitas produktivitas tenaga kerja mencapai puncaknya meski jam kerja mingguan (40,98 jam) menjadi

yang tertinggi di antara klaster, menandakan beban kerja yang lebih berat untuk mempertahankan standar kesejahteraan. Dalam Gambar 3.3, Kota Semarang terlihat sebagai satu-satunya titik klaster 2 (berwarna biru), membedakan dirinya sebagai pusat produktivitas tenaga kerja unggul di wilayah Jawa Tengah.


Sementara itu, klaster 3 mencakup Cilacap, Banyumas, Pemalang, Tegal, dan Brebes. Klaster ini menunjukkan TPT paling tinggi (7,84%) dan TPAK terendah (66,90%), yang berarti hanya sekitar dua pertiga penduduk usia kerja yang terlibat aktivitas produktif indikator bahwa sebagian besar tenaga kerja mengalami kesulitan dalam mendapatkan dan mempertahankan pekerjaan. TKK sebesar 92,16% menandakan lapangan kerja masih ada, tapi tidak cukup merata. IPM 70,38 dan upah/gaji bersih bulanan rata-rata Rp 2.185.494 mengindikasikan produktivitas yang jauh di bawah klaster 1 dan 2, meski jam kerja mingguan (37,68 jam) tidak terlalu berbeda secara signifikan. Pada Gambar 3.3, klaster 3 (berwarna merah muda) tampak terkonsentrasi di daerah selatan dan barat Jawa Tengah, menyiratkan bahwa tantangan produktivitas tenaga kerja paling besar terdapat pada wilayah-wilayah tersebut.

Tabel 3.6: Indikator Rata-Rata Variabel per Klaster (Metode Average Linkage)

Variabel		Klaster	Satuan	
	1	2	3	-
Jumlah Penduduk	923.745	1.694.700	1.811.580	Jiwa
Tingkat Pengangguran Terbuka (TPT)	4,31	5,99	7,84	Persen (%)
Tingkat Partisipasi Angkatan Kerja (TPAK)	73,10	69,42	66,90	Persen (%)
Jumlah Bukan Angkatan Kerja	0,19	0,41	0,47	Proporsi (%) terhadap total penduduk usia kerja
Tingkat Kesempatan Kerja (TKK)	95,69	94,01	92,16	Persen (%)
Indeks Pembangunan Manusia (IPM)	74,46	84,43	70,38	Indeks (0-100)
Pengeluaran per Kapita (Orang/Tahun)	12.048.068,97	16.420.000,00	11.008.200,00	Rp/Orang/Tahun
Jam Kerja Rata-Rata (Seminggu)	36,99	40,98	37,68	Jam/Minggu
Rata-Rata Upah/Gaji Bersih Sebulan	2.263.234,14	3.505.160,00	2.185.494,00	Rp/Bulan

Tabel 3.7: Daftar Kabupaten/Kota per Klaster

Metode Klastering	Klaster	Kabupaten/Kota		
		Purbalingga, Banjarnegara, Kebumen, Purworejo, Wonosobo,		
	Klaster 1 (Merah Muda)	Magelang, Boyolali, Klaten, Sukoharjo, Wonogiri, Karanganyar		
America I inkaga		Sragen, Grobogan, Blora, Rembang, Pati, Kudus, Jepara, Demak,		
Average Linkage		Semarang, Temanggung, Kendal, Batang, Pekalongan, Kota		
		Magelang, Kota Surakarta, Kota Salatiga, Kota Pekalongan,		
		Kota Tegal		
	Klaster 2 (Biru)	Kota Semarang		
	Klaster 3 (Hijau Muda)	Cilacap, Banyumas, Pemalang, Tegal, Brebes		

Gambar 3.3: Visualisasi Hasil Pemetaan Average Linkage

3.4. Evaluasi Perbandingan Hasil Klasterisasi

Klaster optimal yang diperoleh adalah sebanyak 3 kelompok klaster, setelah menemukan banyak klaster yang optimal maka dilakukan pemilihan metode. Dalam penelitian ini digunakan dua metode klasterisasi yaitu K-Means Clustering yang merupakan metode partisi yang mengelompokkan data berdasasrkan pusat klaster (centroid). Untuk pembandingnya yaitu Average Linkage (Hierarchical Clustering) yang merupakan metode hierarki aglomeratif yang menggabungkan klaster berdasarkan rata-rata jarak antar titik pada persebaran data. Masing-masing metode dievaluasi menggunakan metrik utama yaitu Silhoutte Score dan dimana mempresentasikan kepadatan dan pemisahan antar klaster yang dapat dilihat pada Tabel 3.8. Berdasarkan nilai evaluasi model Silhoutte Score, metode Average Linkage memiliki nilai evaluasi yang lebih baik dibandingkan K-Means Clustering.

Tabel 3.8: Klaster Optimal Berdasarkan Indeks Silhouette

Metode	Silhouette Score
K-Means Clustering	0,263
Average Linkage	0,360

4. Kesimpulan

Klasterisasi wilayah kabupaten/kota di Provinsi Jawa Tengah dengan menggunakan metode K-Means dan Average Linkage menghasilkan tiga klaster optimal yang berbeda karakteristiknya, Metode Average Linkage menunjukkan skor Silhouette yang lebih tinggi (0,360) dibandingkan K-Means (0,263), sehingga dianggap lebih mampu memisahkan kelompok dengan baik dan menjadi dasar interpretasi akhir klaster 1, yang meliputi sebagian besar wilayah seperti Purbalingga, Banjarnegara,

Kebumen, dan Demak, dicirikan oleh tingkat pengangguran rendah (4,31%), tingkat partisipasi angkatan kerja tinggi (73,10%), serta Indeks Pembangunan Manusia (IPM) dan upah yang relatif stabil, menunjukkan produktivitas tenaga kerja yang baik tanpa beban kerja berlebihan klaster 2 hanya diwakili oleh Kota Semarang, yang memiliki IPM tertinggi (84,43), upah rata-rata bulanan tertinggi (Rp 3,505,160), meski tingkat pengangguran sedikit lebih tinggi (5,99%) dan jam kerja mingguan paling panjang (40,98 jam), sehingga tercatat sebagai pusat produktivitas unggul di Jawa Tengah, klaster 3, mencakup wilayah-wilayah seperti Cilacap, Banyumas, Pemalang, Tegal, dan Brebes, menempati posisi paling tertinggal dengan tingkat pengangguran tertinggi (7,84%), tingkat partisipasi kerja terendah (66,90%), IPM terendah (70,38), dan upah rata-rata terendah (Rp 2,185,494), mengindikasikan tantangan besar di sektor ketenagakerjaan serta kesejahteraan di wilayah selatan dan barat Jawa Tengah, Dengan demikian, klasterisasi ini memberikan gambaran jelas mengenai perbedaan yang signifikan antara produktivitas berdasarkan karakteristik ketenagakerjaan antar daerah, yang dapat dijadikan dasar dalam penyusunan strategi kebijakan pembangunan oleh pemerintah daerah agar mengidentifikasi daerah-daerah tertinggal dan mengalokasikan sumber daya secara merata, serta mengembangkan kebijakan publik yang tepat untuk mengurangi kesenjangan.

Referensi

- [1] B. P. S. Provinsi Jawa Tengah, "Keadaan angkatan kerja di provinsi jawa tengah agustus 2023," *Semarang: Badan Pusat Statistik Provinsi Jawa Tengah*, vol. 15, 2024. View Online.
- [2] B. P. S. Indonesia, "Penduduk, laju pertumbuhan penduduk, distribusi persentase penduduk, kepadatan penduduk, rasio jenis kelamin penduduk menurut provinsi, 2025 tabel statistik," 2025. View Online.
- [3] B. P. S. Provinsi Jawa Tengah, "Provinsi jawa tengah dalam angka 2024," *Semarang: Badan Pusat Statistik Provinsi Jawa Tengah*, vol. 49, 2024. View Online.
- [4] B. P. S. Provinsi Jawa Tengah, "Analisis kualitas pembangunan manusia provinsi jawa tengah 2023," Semarang: Badan Pusat Statistik Provinsi Jawa Tengah, vol. 5, 2024. View Online.
- [5] D. Sari and L. Anisah, "Studi ketenagakerjaan jawa tengah: Analisis data sakernas 2019–2022," *Jurnal Ketenagakerjaan*, vol. 18, no. 3, 2023. View Online.
- [6] A. Widiyasari, I. A'mal, N. Putri Yunardi, and F. Kartiasih, "Analysis of employment variables on indonesian labor productivity in 2022," *semnasoffstat*, vol. 2023, no. 1, 2023. View Online.
- [7] P. Kawasaki, "Analisis penyerapan tenaga kerja di provinsi jawa tengah," *EFBR*, vol. 1, no. 1, 2024. View Online.
- [8] D. Chrisinta and J. Simarmata, "Implementation of partitioning around method (pam) in identifying the characteristics of ntt province's gnp," *JD*, vol. 6, no. 1, 2024. View Online.
- [9] D. Widyadhan, R. Hastuti, I. Kharisudin, and F. Fauzi, "Perbandingan analisis klaster k-means dan average linkage untuk pengklasteran kemiskinan di provinsi jawa tengah," *prisma*, vol. 4, 2021. View Online.
- [10] M. F. H. Ardiansyah, N. Amany, C. I. Anugrah, and U. D. Syafitri, "K-means clustering application of open unemployment in 2020 caused by covid-19 in west java province," *Enthusiastic*, vol. 4, no. 1, 2024. View Online.
- [11] S. Norhasanah and A. Aziz, "Klasterisasi data tenaga kerja terbuka menurut provinsi dengan penggunaan algoritma k-means," *JATISI (Jurnal Teknik Informatika Dan Sistem Informasi)*, vol. 10, no. 3, 2023. View Online.
- [12] A. L. Yusniyanti et al, "Comparison of average linkage and k-means methods in clustering indonesia's provinces based on welfare indicators," *Journal of Physics: Conference Series*, 2021. View Online.

- [13] A. Atira and B. Sari, "The application of silhouette coefficient, elbow method, and gap statistics for determining the optimal clusters in grouping provinces in indonesia based on happiness index," *jiwp*, vol. 19, no. 17, 2023. View Online.
- [14] M. D. Purnama, "Average linkage-based agglomerative hierarchical clustering terhadap indikator pembangunan ekonomi jawa timur 2022," *Jurnal Sains dan Seni ITS*, vol. 12, no. 6, 2023. View Online.

Format Sitasi IEEE:

A. F. Nashrullah dkk. "Klasterisasi Produktifitas Daerah di Jawa Tengah Berdasarkan Ketenagakerjaan Menggunakan K-Means dan Average Linkage", Jurnal Diferensial, vol. 7(2), pp. 138-149, 2025.

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

