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Abstract:
Let G = (V (G), E(G)) be a simple and connected graph. The distance between two vertices u and v
in G, is the length of a shortest path from u to v, denoted by d(u, v). Suppose S = {s1, s2, ...sk} is an
ordered subset of vertices of G, then the metric representation of a vertex u ∈ V (G) with respect to S,
denoted by r(u|S), is the k−vector (d(u, s1), d(u, s2), ..., d(u, sk)). If every two nonadjacent vertices of
G have distinct metric representations with respect to S, then the set S is called a nonlocal resolving
set for G. A nonlocal resolving set with minimum cardinality is called a nonlocal metric basis. The
nonlocal metric dimension of G is the cardinality of the nonlocal metric basis of G and is denoted by
nldim(G). In this paper, we obtained nonlocal metric dimension of windmill graph.
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1. Introduction

One topic in graph theory that has been extensively studied by researchers is metric dimension.
The concept of metric dimensions on a graph was first introduced by Slater [1] and Harary and
Melter [2]. Let G be a simple connected graph with vertex set V (G) and edge set E(G). For any two
vertices u, v ∈ V (G), the distance d(u, v) is the length of the shortest path between u and v. Given
S = {s1, s2, ..., sk} ⊆ V (G), the metric representation of a vertex u with respect to S is defined as

r(u|S) = (d(u, s1), d(u, s2), ..., d(u, sk)).

If every pair of distinct vertices of G has different metric representations, then S is called a resolv-
ing set. A resolving set of minimum cardinality is called a metric basis, and its cardinality is referred
to as the metric dimension of G, denoted by dim(G). The metric dimension has wide-ranging appli-
cations, such as robot navigation [3], chemical compound classification [4], coin weighing problems
[5], and the placement of fire sensors in buildings [6].

Over the years, the study of metric dimension has expanded into various variants such as the
strong metric dimension [7], local metric dimension [8], the k-metric dimension [9], edge metric di-
mension [10], and nonlocal metric dimension [11]. In the local metric dimension, the focus is on
resolving every adjacent pair of vertices, while in the edge metric dimension, the objects being re-
solved are the edges of the graph. More recently, Klavžar and Kuziak [11] introduced the nonlocal
metric dimension, where the requirement is to resolve every nonadjacent pair of vertices.
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Formally, in a simple connected graph G, a set S ⊆ V (G) is called a nonlocal resolving set if every
two nonadjacent vertices u, v ∈ V (G) have distinct metric representations with respect to S, that is

r(u|S) ̸= r(v|S).

The nonlocal resolving set with minimum cardinality is called a nonlocal metric basis, and its cardi-
nality is the nonlocal metric dimension of G, denoted by nldim(G).

Recent studies have started to explore this new variant. Klavžar and Kuziak [11] introduced the
concept of nonlocal metric dimension and provided characterizations for graphs with nldim(G) = 1
and nldim(G) = V (G) − 2, as well as results for block graphs, corona products, and wheels. More
recently, Xiong and Deng [12] investigated nonlocal metric dimension in several network models, in-
cluding hexagonal ladder, radix triangular mesh, Sierpiński, and small-world networks. These works
demonstrate that although the concept is new, it has begun to attract attention in both theoretical and
applied contexts.

This motivates further exploration of the nonlocal metric dimension in different graph classes.
In this paper, we focus on determining the nonlocal metric dimension of the windmill graph. It
should be noted that the metric dimension and edge metric dimension of windmill graph have been
investigated in [13], while the study on its local metric dimension was presented in [14].

2. Methodology

The method used in this study is a literature review, which involves collecting references related
to research on nonlocal metric dimensions and relevant topics obtained from articles, proceedings,
and books. The steps taken to determine the nonlocal metric dimension of windmill graph are as
follows.

1. Construct the windmill graph.
2. Determine the distances between vertices in windmill graph.
3. Select nonlocal resolving sets of windmill graph.
4. Identify the nonlocal resolving set with minimum cardinality.
5. Establish the general (explicit) formula for nonlocal metric dimension of windmill graph.
6. Develop a theorem and provide a proof of its validity.

To show that nonlocal metric dimension of a graph G is nldim(G) = k, it must be proven that
nldim(G) ≤ k and nldim(G) ≥ k. The upper bound can be shown by demonstrating that there exists
a nonlocal resolving set S ⊆ V (G) with |S| = k. Meanwhile, the lower bound can be established by
showing that for every possible set S′ with |S′| ≤ k − 1 is not a nonlocal resolving set of G, that is,
there exist two nonadjacent vertices with same metric representation.

3. Results and Discussions

Definition 3.1. [15] Windmill graph Wm
n is the graph obtained by taking m copies of the complete

graph Kn with a vertex in common.

Figure 3.1 illustrates the windmill graph W 3
5 . In general, the windmill graph Wm

n has order m(n−
1) + 1 and size mn(n−1)

2 .
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Figure 3.1: Windmill graph W 3
5

In windmill graph Wm
n , the distance between each pair of different vertices is given in Table 3.1.

Table 3.1: The distance between each pair of different vertices in Wm
n

No Distance
1 d(u, vij) = 1 with i = 1, 2, ...,m and j = 1, 2, ..., n− 1
2 d(vij , v

i
k) = 1 with i = 1, 2, ...,m and j, k = 1, 2, ..., n− 1 (j ̸= k)

3 d(vik, v
j
l ) = 2 with i, j = 1, 2, ...,m and k, l = 1, 2, ..., n− 1 (i ̸= j)

From Table 3.1, we observe that two nonadjacent vertices are vik and vjl with i, j = 1, 2, . . . ,m;
k, l = 1, 2, . . . , n − 1; and i ̸= j. Furthermore, lemmas and a theorem are given regarding nonlocal
metric dimension of the windmill graph Wm

n , which is the result of this research. To simplify the
proof, the set Fi(i = 1, 2, . . . ,m) is defined as follows.

Fi = {vi1, vi2, . . . , vin−1}

Lemma 3.1. A set S is a nonlocal resolving set of Wm
n with m ≥ 2 and n ≥ 3 if and only if for every pair

Fi, Fj with i ̸= j, S ∩ (Fi ∪ Fj) ̸= ∅.

Proof. Assume that S ∩ (Fi ∪ Fj) = ∅ for some i ̸= j. Choose vi1 ∈ Fi and vj1 ∈ Fj . Since i ̸= j,
we have d(vi1, v

j
1) = 2, which means that vi1 and vj1 are nonadjacent vertices and, therefore, should be

resolved nonlocally. Note that if u ∈ S, then d(u, vi1) = d(u, vj1) = 1. Moreover, for every s ∈ S \ {u},
since s /∈ Fi ∪ Fj , the shortest path from s to either vi1 or vj1 necessarily passes through u. Thus,
d(s, vi1) = d(s, vj1) = 2. Consequently, r(vi1|S) = r(vj1|S), contradicting the fact that S is a nonlocal
resolving set. Hence, S ∩ (Fi ∪ Fj) ̸= ∅ for every i ̸= j.
Let x ∈ Fi and y ∈ Fj be two nonadjacent vertices with i ̸= j. Since S ∩ (Fi ∪ Fj) ̸= ∅, there exists
s ∈ S ∩ (Fi ∪ Fj).

• If s ∈ Fi, then d(s, x) ∈ {0, 1}, where d(s, x) = 0 when s = x and d(s, x) = 1 when s ̸= x. In
either case, we have d(s, y) = 2.

• If s ∈ Fj , then d(s, y) ∈ {0, 1}, where d(s, y) = 0 when s = y and d(s, y) = 1 when s ̸= y. In
either case, we have d(s, x) = 2.
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In both cases, it follows that d(s, x) ̸= d(s, y), and thus x and y have different metric representations
with respect to S. Therefore, S is a nonlocal resolving set.

Lemma 3.2. If S is a nonlocal resolving set of Wm
n with m ≥ 2 and n ≥ 3, then |S| ≥ m− 1.

Proof. Assume to the contrary that |S| ≤ m − 2, then there exist at least two sets Fi and Fj with
i ̸= j such that S ∩ (Fi ∪ Fj) = ∅. By Lemma 3.1, this implies that S is not a nonlocal resolving set, a
contradiction. Hence, |S| ≥ m− 1.

Theorem 3.1. If m ≥ 2 and n ≥ 3, then nldim(Wm
n ) = m− 1.

Proof. Let S = {v11, v21, ..., v
m−1
1 } with m ≥ 2 (see Figure 3.2).

Figure 3.2: Windmill graph Wm
n

We show that S is a nonlocal resolving set of the windmill graph Wm
n with m ≥ 2 and n ≥ 3.

Consider the following metric representations:

r(u | S) = (1, 1, 1, 1, . . . , 1, 1)

r(v1k | S) = (1, 2, 2, 2, . . . , 2, 2, 2)

r(v2k | S) = (2, 1, 2, 2, . . . , 2, 2, 2)

r(v3k | S) = (2, 2, 1, 2, . . . , 2, 2, 2)

...

r(vm−1
k | S) = (2, 2, 2, 2, . . . , 2, 1, 2)

r(vmk | S) = (2, 2, 2, 2, . . . , 2, 2, 2)

with k = 1, 2, . . . , n − 1. It follows that for every two nonadjacent vertices vik dan vjl with i, j =
1, 2, . . . ,m; k, l = 1, 2, ..., n − 1, and i ̸= j, their metric representations are distinct. Hence, S is a
nonlocal resolving set and we obtain

|S| ≤ m− 1. (3.1)
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From Lemma 3.2 and inequality 3.1, it follows that S is a nonlocal metric basis. Consequently, the
nonlocal metric dimension of the windmill graph is m− 1

Our result on nonlocal metric dimension of windmill graph Wm
n can be compared with results for

other variants. For instance, Singh et al. [13] computed metric dimension and edge metric dimension
of windmill graph, showing that dim(Wm

n ) = m(n − 2) and edim(Wm
n ) = m(n − 1) − 1. Cynthia

and Fancy [14] showed that the local metric dimension of windmill graphs coincides with the metric
dimension, that is dim(Wm

n ) = ldim(Wm
n ) = m(n − 2). This demonstrates that nonlocal metric

dimension provides a complementary perspective not captured by metric dimension, local metric
dimension, or edge metric dimension. This study is limited to windmill graph, and the results cannot
be directly extended to other graph classes. Special cases occur when n = 3 and m ≥ 2, windmill
graph is isomorphic to friendship graph Fm. Therefore, nonlocal metric dimension of friendship
graph is nldim(Fm) = m − 1. Further research may explore the nonlocal metric dimension in other
classes of graphs.

4. Conclusion

This study examined the nonlocal metric dimension of windmill graph. From the proven lemmas
and theorem, it can be concluded that for m ≥ 2 and n ≥ 3, the value of the nonlocal metric dimension
of the windmill graph Wm

n is m−1. Furthermore, research related to nonlocal metric dimensions can
be examined for other classes of graphs.
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