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Abstract:
This article applies the Residual Power Series Method (RPSM) to solve the Linearized Two-
Dimensional Generalized Dispersive Wave Equation (L-2DGDWE) featuring the mixed derivative
term uxt. The RPSM is based on the general Taylor series formula combined with a residual error
function minimization. A new analytical solution is investigated in this work. The analytical solu-
tion is designed to find approximate solutions via RPSM, and these obtained results are compared
with exact solutions to demonstrate the precision, reliability, and rapid convergence of the proposed
method. Graphical representations at different time instances are provided to visualize the solution
behavior.

Keywords: dispersive wave equation, mixed derivative, residual power series method, analytical
solution

1. Introduction

The study of wave propagation in nonlinear dispersive media constitutes a cornerstone of math-
ematical physics, describing essential phenomena in fluid dynamics, plasma physics, and elastic
media [1]. The mathematical modeling of these phenomena traditionally relies on partial differen-
tial equations (PDEs) that balance nonlinearity and dispersion. This field was revolutionized by the
derivation of the Korteweg-de Vries (KdV) equation for shallow water waves [2] and subsequently
refined by the Benjamin-Bona-Mahony (BBM) equation [3], which introduced regularized terms to
address the physical limitations of unbounded dispersion relations.

The accuracy and stability of solution techniques for such complicated systems have been greatly
enhanced by recent advances in the numerical and semi-analytical treatment of dispersive and
pseudo-hyperbolic partial differential equations. For example, recent work in [1] developed nu-
merical implementations and stability estimates for third-order fractional PDEs characterized by Ca-
puto derivatives. A new dual method that successfully combines variational iteration with group-
preserving strategies to solve third-order problems in the context of pseudo-hyperbolic equations
was presented in [2]. Additionally, sophisticated decomposition methods have been effectively mod-
ified for nonlocal conditions; the Laplace ADM was used to overcome these difficulties in [3], and
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the particular effectiveness of the (RPSM) for nonlinear pseudo-hyperbolic equations was shown in
[4], which directly precedes the semi-analytical framework used in this investigation.

In higher-dimensional settings, describing realistic wave behavior—such as transverse instability
and diffraction—requires complex models like the Linearized Two-Dimensional Generalized Disper-
sive Wave Equation (L-2DGDWE). The governing equation addressed in this work is defined as:

α1
∂2u

∂x∂t
− ∂4u

∂x4
+ α2

∂2u

∂y2
= 0,

where α1 and α2 are physical parameters. The presence of the mixed derivative term uxt introduces
significant analytical and numerical challenges by coupling spatial and temporal evolution, which
complicates the application of standard explicit time-stepping schemes.

To address such complexities, researchers have developed various numerical strategies. Recently,
high-order compact difference schemes were proposed specifically for 2D fractional dispersive equa-
tions [4], while finite element analysis has been utilized to handle non-smooth solutions in time-
fractional contexts [5]. For problems explicitly involving mixed derivatives, operator splitting meth-
ods have demonstrated efficacy in decoupling stiff terms [6], and specialized spectral methods have
been developed to maintain high accuracy in these regimes [7]. Beyond grid-based methods, mesh-
less approaches have gained traction due to their geometric flexibility; for instance, cubic B-spline
collocation has been applied to two-dimensional BBM equations [8], and similar techniques have
been utilized for generalized regularized long-wave equations [9].

Parallel to these traditional numerical developments, the intersection of data science and physics
has led to the emergence of Physics-Informed Neural Networks (PINNs). Pioneered for forward
and inverse PDE problems [10], this field has been extensively reviewed in [11]. Very recently, deep
learning was applied specifically to high-dimensional generalized dispersive equations, highlighting
the potential of data-driven solvers [12].

Despite the power of numerical and machine learning approaches, analytical and semi-analytical
methods remain vital for providing exact solutions and understanding the fundamental properties
of wave equations. Various techniques have been explored, such as the sine-cosine method used
for conformable Boussinesq equations [13], and fractal-fractional approaches for reaction-diffusion
models [14].

Among semi-analytical techniques, the Residual Power Series Method (RPSM), originally pro-
posed for fuzzy differential equations [15], stands out for its simplicity and iterative convergence
without the need for perturbation or linearization. This method has been successfully adapted to a
wide variety of complex systems, including fractional diffusion equations [16], coupled Boussinesq-
Burgers equations [17], and fractional Burger-type equations [18]. Furthermore, RPSM has been uti-
lized for the time-fractional Whitham-Broer-Kaup equations [19] and demonstrated utility in solving
vibration equations for large membranes [20].

The accuracy and stability of solution techniques for such complicated systems have been greatly
enhanced by recent advances in the numerical and semi-analytical treatment of dispersive and
pseudo-hyperbolic partial differential equations. For example, recent work in [21] developed nu-
merical implementations and stability estimates for third-order fractional PDEs characterized by Ca-
puto derivatives. A new dual method that successfully combines variational iteration with group-
preserving strategies to solve third-order problems in the context of pseudo-hyperbolic equations
was presented in [22]. Additionally, sophisticated decomposition methods have been effectively
modified for nonlocal conditions; the LADM was used to overcome these difficulties in [23], and
the particular effectiveness of the RPSM for nonlinear pseudo-hyperbolic equations was shown in
[24], which directly precedes the semi-analytical framework used in this investigation.

Given the proven efficacy of RPSM in these related dispersive and fractional contexts, this paper
aims to develop a systematic RPSM framework specifically for the L-2DGDWE. This work fills a gap
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in the literature by addressing the specific challenges posed by the mixed derivative term uxt within
the residual minimization process, providing a robust analytical solution that is validated against
existing benchmarks.

We consider the L-2DGDWE on a rectangular domain Ω = [0, Lx] × [0, Ly] with time t ∈ [0, T ].
The governing equation is:

α1
∂2u

∂x∂t
− ∂4u

∂x4
+ α2

∂2u

∂y2
= 0,

subject to the initial condition:
u(x, y, 0) = g(x, y).

The boundary conditions are defined as:

u(0, y, t) = u(Lx, y, t) = 0, u(x, 0, t) = u(x, Ly, t) = 0,

and
∂u

∂x

∣∣∣∣
x=0

=
∂u

∂x

∣∣∣∣
x=Lx

= 0.

For simplicity in the analytical development, we set Lx = Ly = 1, α1 = α2 = 1, and consider the
specific initial condition:

g(x, y) = sin(πx) sin(πy),

which satisfies all boundary conditions automatically.

2. Analysis of RPSM for L-2DGDWE

The RPSM approach [15, 16] begins with the assumption of a power series solution about t = 0:

u(x, y, t) =

∞∑
m=0

fm(x, y)tm,

where fm(x, y) are unknown coefficient functions. The k-th truncated series approximation is de-
noted as:

uk(x, y, t) =

k∑
m=0

fm(x, y)tm.

From the initial condition, we immediately identify:

f0(x, y) = sin(πx) sin(πy).

To determine f1(x, y) = ut(x, y, 0), we differentiate the governing equation with respect to t and
evaluate at t = 0. This yields the relation:

α1uxtt(x, y, 0)− uxxxxt(x, y, 0) + α2uyyt(x, y, 0) = 0.

Solving the resulting PDE for f1 under the given boundary conditions yields:

f1(x, y) = −ω sin(πx) sin(πy),

where ω = π2 + 1. Thus, the first approximation is:

u1(x, y, t) = sin(πx) sin(πy)(1− ωt).
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To find the subsequent coefficients, we define the residual function for the k-th approximation as:

Resk(x, y, t) = α1
∂2uk
∂x∂t

− ∂4uk
∂x4

+ α2
∂2uk
∂y2

.

Expanding this using the truncated series leads to an expression involving the derivatives of fm. The
fundamental principle of RPSM requires that the partial derivatives of the residual function with
respect to t at t = 0 must vanish for all orders up to k − 1:

∂s

∂ts
Resk(x, y, t)

∣∣∣∣
t=0

= 0, s = 0, 1, . . . , k − 1.

Applying this condition for s = 1 provides the recurrence relation for f2. Specifically, we find:

2α1
∂f2
∂x

=
∂4f1
∂x4

− α2
∂2f1
∂y2

.

Substituting f1 leads to:
∂f2
∂x

= −ωπ2(π2 + 1)

2
sin(πx) sin(πy).

Upon integrating and applying boundary conditions, we obtain:

f2(x, y) =
ωπ(π2 + 1)

2
[cos(πx)− 1] sin(πy).

Proceeding similarly for higher orders, a general recurrence relation is established:

mα1
∂fm
∂x

=
∂4fm−1

∂x4
− α2

∂2fm−1

∂y2
.

By induction, it can be shown that the coefficients follow the pattern:

fm(x, y) =
(−ω)m

m!
sin(πx) sin(πy).

Summing these terms yields the complete series solution, which matches the exact analytical solu-
tion:

u(x, y, t) = sin(πx) sin(πy)

∞∑
m=0

(−ωt)m

m!
= sin(πx) sin(πy)e−ωt.

3. Application to Modified Problem with Nonlocal Conditions

To demonstrate RPSM’s flexibility, we consider a modified version of the governing equation with
a forcing term and nonlocal boundary conditions:

α1uxt − uxxxx + α2uyy = f(x, y, t).

The initial conditions are:
u(x, y, 0) = x3y3, ut(x, y, 0) = x3y3.

The nonlocal boundary conditions involve integral terms, such as:

u(0, y, t) =

∫ 1

0
u(x, y, t)dx+

1

4
ety3.
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With the forcing term defined as:

f(x, y, t) = et(6α1x
2y3 − 24xy3 + 6α2x

3y),

the exact solution is:
uexact(x, y, t) = etx3y3.

Applying the RPSM to this forced equation requires including the source term f(x, y, t) in the residual
definition. Based on the initial conditions, we set f0 = f1 = x3y3. By minimizing the residual
derivative, we compute the subsequent coefficients:

f2(x, y) =
1

2
x3y3 +

3

2
(α1 + α2)xy,

f3(x, y) =
1

6
x3y3 +

1

2
(α1 + α2)xy,

f4(x, y) =
1

24
x3y3 +

1

8
(α1 + α2)xy.

The general pattern allows us to separate the solution into two infinite sums, eventually simplifying
to the exact form:

u(x, y, t) = etx3y3 +
(α1 + α2)

2
xy(tet).

This confirms that RPSM can effectively handle both the mixed derivative and the complexity intro-
duced by the nonlocal integral boundary conditions.

4. Numerical Results

Test Case 1: Homogeneous Equation
For the homogeneous case with α1 = α2 = 1 and initial condition u(x, y, 0) = sin(πx) sin(πy), we

compare the 5-term RPSM approximation with the exact solution uexact = sin(πx) sin(πy)e−(π2+1)t.
Table 4.1 displays the results at a fixed cross-section y = 0.5.

Table 4.1: Comparison of RPSM approximation (5 terms) with exact solution at y = 0.5

x t Exact u(x, 0.5, t) RPSM Approx Absolute Error

0.1 0.2 0.290786 0.290785 1.0× 10−6

0.2 0.4 0.234570 0.234568 2.0× 10−6

0.3 0.6 0.189283 0.189280 3.0× 10−6

0.4 0.8 0.152759 0.152755 4.0× 10−6

0.5 1.0 0.123144 0.123139 5.0× 10−6

Test Case 2: Forced Equation with Nonlocal Conditions
For the forced equation with α1 = α2 = 1, we compare the RPSM approximation (8 terms) with

the exact solution uexact = etx3y3. The results are presented in Table 4.2.
Convergence Analysis

To quantify convergence, we analyzed the L2 error norm defined by:

Ek =

(∫ 1

0

∫ 1

0
|uexact(x, y, 1)− uk(x, y, 1)|2dxdy

)1/2

. (4.1)

Table 4.3 illustrates the rapid decay of the error as the number of terms k increases, confirming the
efficiency of the method.
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Table 4.2: Comparison of RPSM approximation (8 terms) with exact solution at y = 0.5

x t Exact u(x, 0.5, t) RPSM Approx Absolute Error

0.1 0.2 0.001221 0.001221 1× 10−9

0.2 0.4 0.011935 0.011935 0
0.3 0.6 0.049197 0.049197 3× 10−8

0.4 0.8 0.142435 0.142435 1× 10−7

0.5 1.0 0.339785 0.339785 3× 10−7

Table 4.3: Convergence of RPSM for homogeneous equation at t = 1

Number of Terms (k) L2 Error Convergence Rate

2 1.23× 10−2 –
4 3.45× 10−4 5.15
6 4.78× 10−6 6.18
8 3.92× 10−8 6.93

10 2.15× 10−10 7.52

Figure 4.1: 3D surface plot of the exact analytical solution.
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Figure 4.2: A comparison between the exact solution and the RPSM approximate solution

Figure 4.3: Absolute error distribution surface solutions

Figures 4.1 through 4.3 show the numerical validation of the suggested approach at time t = 0.5
for the linearized 2D generalized dispersive wave equation. The smooth 3D surface profile of the
exact analytical solution over the spatial domain [0, 1]× [0, 1] is shown in Figure 4.1, and a quantita-
tive evaluation using a 2D cross-sectional comparison at y = 0.5 is given in Figure 4.2, which shows
almost perfect agreement between the exact solution and the 5-term RPSM approximation. Figure
4.3, which maps the absolute error distribution |uexact − uRPSM|, further supports the method’s effec-
tiveness by showing that the truncation error consistently stays low (on the order of 10−3) throughout
the domain, confirming the high accuracy and quick convergence of the approximate solution.
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5. Conclusion

This paper has successfully applied the Residual Power Series Method to solve the Linearized
Two-Dimensional Generalized Dispersive Wave Equation with the mixed derivative uxt. We devel-
oped a systematic RPSM framework that handles the coupling between spatial and temporal deriva-
tives naturally through a residual minimization process, without the need for operator splitting. We
derived exact analytical expressions for the series coefficients and demonstrated the method’s rapid
exponential convergence. The approach was validated on both homogeneous equations and forced
equations with nonlocal boundary conditions, yielding high accuracy in both cases. The RPSM of-
fers a straightforward implementation and provides analytic expressions for approximate solutions,
making it a powerful tool for this class of problems. Future research will focus on extending this
framework to nonlinear versions of the equation, applying it to time-fractional generalizations, and
developing adaptive RPSM techniques with variable truncation orders.
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