POTENTIAL ANTIMICROBIAL IN WHEY AND LACTIC ACID BACTERIA IN SUMBA MARE'S MILK

  • Maxs U. E. Sanam(1*)
    Laboratory of Animal Diseases and Veterinary Public Health, Veterinary Faculty, Universitas Nusa cendana, Indonesia
  • (*) Corresponding Author
Keywords: antimicrobial, mare’s milk, whey

Abstract

Sumba mare’s milk is rich in whey protein, fat, and lactic acid bacteria known to boost antimicrobial activities required in the prevention of diarrhea and inflammation. This study is, therefore, aimed at determining the antibacterial properties of whey and lactic acid bacteria as therapeutic compounds against pathogenic Staphylococcus aureus, SalmonellaTyphimurium, and Salmonella Enteritidis, respectively. The investigations were conducted at the Veterinary Public Health Laboratory of the Faculty of Veterinary Medicine, Nusa Cendana University. Whey antimicrobial test was performed using Salmonella Typhimurium ATCC® 19585 ™ and Staphylococcus aureus, while for lactic acid bacteria, SalmonellaEnteritidis ATCC® 13076 ™ obtained from the Veterinary Public Health Section, Faculty of Veterinary Medicine, Bogor Agricultural University, was applied. However, mare colostrum was acquired from East Sumba, East Indonesia. The results showed the average penicillin inhibitory zones of whey protein were estimated at 20 mm and 17 mm against Staphylococcus aureus. This also revealed the average diameter of the penicillin inhibitory zone and whey protein were equally evaluated at 2.1 mm, although the latter demonstrated sufficient antimicrobial activity against SalmonellaTyphimurium. Furthermore, the lactic acid bacteria inhibitory zone in filtrate and non-filtrates are strongly characterized using the agar method against Salmonella Enteritidis. In conclusion, whey protein and lactic acid bacteria from Sumba mare’s milk have significant antimicrobial potentials during the treatment of Salmonellosis and Staphylococcus aureusinfections.

Downloads

Download data is not yet available.

References

Abushelaibi, A., Al-Mahadin, S., El-Tarabily, K., Shah, N. P., & Ayyash, M. (2017). Characterization of potential probiotic lactic acid bacteria isolated from camel milk. Food Science and Technology, 79, 316–325.
Atanasova, J., Moncheva, P., & Ivanova, I. (2014). Article; food biotechnology Proteolytic and antimicrobial activity of lactic acid bacteria grown in goat milk. Biotechnology and Biotechnological Equipment, 28(6), 1073–1078.
Charu, G., & Dhan, P. (2017). Therapeutic Potential of Milk Whey. Beverages, 3(4), 31.
Coeuret, V., Gueguen, M., & Vernoux, J. P. (2004). Numbers and strains of lactobacilli in some probiotic products. International Journal of Food Microbiology, 97(2), 147–156.
Corrochano, A. R., Sariçay, Y., Arranz, E., Kelly, P. M., Buckin, V., & Giblin, L. (2019). Comparison of antioxidant activities of bovine whey proteins before and after simulated gastrointestinal digestion. Journal of Dairy Science, 102(1), 54–67.
Coutinho da Silva, M. A., Darr, C. R., Moraes, L. E., & Forshey, B. S. (2017). Lactoferrin Modulates Uterine Inflammation Postbreeding in the Mare. Journal of Equine Veterinary Science.
Detha, A; Beribe, E; Datta, F. (2019). Karakteristik Bakteri Asam Laktat yang Diisolasi dari Susu Kuda Sumba. Jurnal Kajian Veteriner, 7(1), 85–92.
Detha, A., Saputra, A., & Ola, A. (2019). Antimicrobial activity of whey mare’s milk against Salmonella enteritidis. Journal of Physics: Conference Series, 1146.
Detha, A., Sudarwanto, M., Latif, H., Datta, F. U., & Rahayu, P. (2013). Fractionation and identification antimicrobial activity of Sumba mare milk protein against causative agent of subclinical mastitis. Global Veterinaria, 11(5).
Detha, A et al. (2013). Fractionation and identification antimicrobial activity of Sumba mare milk protein against causative agent of subclinical mastitis. Global Veterinaria, 11(5), 674–680.
Detha A, Datta FU. 2015. Antimicrobial activity of traditional wines (Sopi and Moke) against Salmonella sp. and Escherichia coli. Journal of Advanced Veterinary and Animal Research 3 (3): 282-285
Detha A, Wuri DA, Santhia K. 2015. Seroprevalence of Japanese encephalitis virus using competitive enzyme linked immunosorbent assay (C-ELISA) in pigs in East Sumba, Indonesia. Journal of Advanced Veterinary and Animal Research 2 (4): 481-483
Detha, Annytha, Datta, F. U., Beribe, E., Foeh, N., & Ndaong, N. (2018). Effectiveness of Lactic Acid Bacteria Isolated From Sumba Horse Milk on Silase Quality. Jurnal Kajian Veteriner, 6(1), 31–37.
Ebringer, L., Ferenčík, M., & Krajčovič, J. (2008). Beneficial health effects of milk and fermented dairy products - Review. Folia Microbiologica, 53(5), 378–394.
Eng, S. K., Pusparajah, P., Ab Mutalib, N. S., Ser, H. L., Chan, K. G., & Lee, L. H. (2015). Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Frontiers in Life Science.
Fečkaninová, A., Koščová, J., Mudroňová, D., Popelka, P., & Toropilová, J. (2017). The use of probiotic bacteria against Aeromonas infections in salmonid aquaculture. In Aquaculture Vol 469: 1-8.
Gardete, S., & Tomasz, A. (2014). Mechanisms of vancomycin resistance in Staphylococcus aureus. In Journal of Clinical Investigation.
Hernández-Aquino, S., Miranda-Romero, L. A., Fujikawa, H., de Jesús Maldonado-Simán, E., & Alarcón-Zuñiga, B. (2019). Antibacterial activity of lactic acid bacteria to improve shelf life of raw meat. Biocontrol Science, 24(4), 185–192.
Ismail, Y. S., & Yulvizar, C. (2017). Isolasi, Karakterisasi dan Uji Aktivitas Antimikroba Bakteri Asam Laktat dari Fermentasi Biji Kakao (Theobroma cacao L.). Bioleuser, 1(2), 45–53.
Kasi, P. D., Ariandi, & Mutmainnah, H. (2017). Uji Antibakteri Isolat Bakteri Asam Laktat yang Diisolasi dari Limbah Cair Sagu terhadap Bakteri Patogen. Jurnal Biotropika, 5(3), 97–101.
Khan, I. T., Nadeem, M., Imran, M., Ullah, R., Ajmal, M., & Jaspal, M. H. (2019). Antioxidant properties of Milk and dairy products: A comprehensive review of the current knowledge. In Lipids in Health and Disease.
Kilara, A., & Vaghela, M. N. (2018). Whey proteins. In Proteins in Food Processing: Second Edition (pp. 93–126).
Lee, A. S., De Lencastre, H., Garau, J., Kluytmans, J., Malhotra-Kumar, S., Peschel, A., & Harbarth, S. (2018). Methicillin-resistant Staphylococcus aureus. Nature Reviews Disease Primers.
Lee, J. S., Chung, M. J., & Seo, J. G. (2013). In vitro evaluation of antimicrobial activity of lactic acid bacteria against Clostridium difficile. Toxicological Research, 29(2), 99–106.
Ljungh, A., & Wadström, T. (2006). Lactic acid baLjungh, A., & Wadström, T. (2006). Lactic acid bacteria as probiotics. In Current Issues in Intestinal Microbiology.cteria as probiotics. Current Issues in Intestinal Microbiology, 7(2), 73–89.
Markiewicz-Keszycka, M., Wójtowski, J., Kuczyńska, B., Puppel, K., Czyzak-Runowska, G., Bagnicka, E., Strzałkowska, N., Jóźwik, A., & Krzyzewski, J. (2013). Chemical composition and whey protein fraction of late lactation mares’ milk. International Dairy Journal.
Marshall, K. (2004). Therapeutic applications of whey protein. In Alternative Medicine Review 9(2): 136–156.
Mays, Z. J., & Nair, N. U. (2018). Synthetic biology in probiotic lactic acid bacteria: At the frontier of living therapeutics. In Current Opinion in Biotechnology 53: 224–231.
Mazahreh, A. S., & Ershidat, O. T. M. (2009). The benefits of lactic acid bacteria in yogurt on the gastrointestinal function and health. Pakistan Journal of Nutrition.
McGuinness, W. A., Malachowa, N., & DeLeo, F. R. (2017). Vancomycin resistance in Staphylococcus aureus. In Yale Journal of Biology and Medicine.
Minjigdorj, N., Baldorj, O., & Austbø, D. (2012). Chemical composition of Mongolian mare milk. Acta Agriculturae Scandinavica A: Animal Sciences.
Morales, G., Sierra, P., Mancilla, A., Paredes, A., Loyola, L. A., Gallardo, O., & Borquez, J. (2003). Secondary metabolites from four medicinal plants from northern Chile: Antimicrobial activity and biotoxicity against Artemia salina. Boletin de La Sociedad Chilena de Quimica, 48(2), 13–18.
Nair, D. V. T., Venkitanarayanan, K., & Johny, A. K. (2018). Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. In Foods.
Ng, T. B., Cheung, R. C. F., Wong, J. H., Wang, Y., Ip, D. T. M., Wan, D. C. C., & Xia, J. (2015). Antiviral activities of whey proteins. In Applied Microbiology and Biotechnology (Vol. 99, Issue 17, pp. 6997–7008).
Patel, S. (2015). Emerging trends in nutraceutical applications of whey protein and its derivatives. In Journal of Food Science and Technology (Vol. 52, Issue 11, pp. 6847–6858).
Pessione, E., & Cirrincione, S. (2016). Bioactive molecules released in food by lactic acid bacteria: Encrypted peptides and biogenic amines. Frontiers in Microbiology, 7, 1–19.
Ramos, O. L., Pereira, R. N., Rodrigues, R. M., Teixeira, J. A., Vicente, A. A., & Malcata, F. X. (2015). Whey and Whey Powders: Production and Uses. In Encyclopedia of Food and Health (pp. 498–505).
Salami, M., Moosavi-Movahedi, A. A., Ehsani, M. R., Yousefi, R., Haertlé, T., Chobert, J. M., Razavi, S. H., Henrich, R., Balalaie, S., Ebadi, S. A., Pourtakdoost, S., & Niasari-Naslaji, A. (2010). Improvement of the antimicrobial and antioxidant activities of camel and bovine whey proteins by limited proteolysis. Journal of Agricultural and Food Chemistry, 58(6), 3297–3302.
Sandi, N. A., & Salasia, S. I. O. (2016). Alternative antibiotics source from symbiont of lactid acid bacteria inside stomach of honeybees (Apis mellifera and apis dorsata) against multiresistant antibiotics pathogenic bacteria. In Research Journal of Microbiology (Vol. 11, Issues 2–3, pp. 93–100).
Scala, M. C., Sala, M., Pietrantoni, A., Spensiero, A., Di Micco, S., Agamennone, M., Bertamino, A., Novellino, E., Bifulco, G., Gomez-Monterrey, I. M., Superti, F., & Campiglia, P. (2017). Lactoferrin-derived Peptides Active towards Influenza: Identification of Three Potent Tetrapeptide Inhibitors. Scientific Reports.
Schaefer, L., Auchtung, T. A., Hermans, K. E., Whitehead, D., Borhan, B., & Britton, R. A. (2010). The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiology, 156(6), 1589–1599.
Schved, F., Lalazar, A., Henis, Y., & Juven, B. J. (1993). Purification, partial characterization and plasmid‐linkage of pediocin SJ‐1, a bacteriocin produced by Pediococcus acidilactici. Journal of Applied Bacteriology.
Stoyanova, L. G., Ustyugova, E. A., & Netrusov, A. I. (2012). Antibacterial metabolites of lactic acid bacteria: Their diversity and properties. Applied Biochemistry and Microbiology, 48(3), 229–243. https://doi.org/10.1134/S0003683812030143
Suryani, Dharma, A., Manjang, Y., Arief, S., Munaf, E., & Nasir, N. (2014). Antimicrobial and antifungal activity of Lactic Acid Bacteria isolated from coconut milk fermentation. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(6), 1587–1595.
Šušković, J., Kos, B., Beganović, J., Pavunc, A. L., Habjanič, K., & Matoć, S. (2010). Antimicrobial activity - The most important property of probiotic and starter lactic acid bacteria. Food Technology and Biotechnology, 48(3), 296–307.
Topisirovic, L., Kojic, M., Fira, D., Golic, N., Strahinic, I., & Lozo, J. (2006). Potential of lactic acid bacteria isolated from specific natural niches in food production and preservation. International Journal of Food Microbiology, 112(3), 230–235.
Urnemi, U., Syukur, S., Purwati, E., Ibrahim, S., & Jamsari, J. (2016). Potensi Bakteri Asam Laktat Sebagai Kandidat Probiotik Antimikroba Patogen Asal Fermentasi Kakao Varietas Criollo. Jurnal Riset Teknologi Industri, 6(12), 67.
Volzing, K., Borrero, J., Sadowsky, M. J., & Kaznessis, Y. N. (2013). Antimicrobial peptides targeting gram-negative pathogens, produced and delivered by lactic acid bacteria. ACS Synthetic Biology, 2(11), 643–650. https://doi.org/10.1021/sb4000367
Wiesner, J., & Vilcinskas, A. (2010). Antimicrobial peptides: The ancient arm of the human immune system. Virulence, 1(5), 440–464. https://doi.org/10.4161/viru.1.5.12983
Yoshida, S., Wei, Z., Shinmura, Y., & Fukunaga, N. (2000). Separation of lactoferrin-a and -b from bovine colostrum. Journal of Dairy Science.
Zulueta, A., Maurizi, A., Frígola, A., Esteve, M. J., Coli, R., & Burini, G. (2009). Antioxidant capacity of cow milk, whey and deproteinized milk. International Dairy Journal, 19(6–7), 380–385. https://doi.org/10.1016/j.idairyj.2009.02.003

PlumX Metrics

Published
2022-08-03
How to Cite
Sanam, M. (2022). POTENTIAL ANTIMICROBIAL IN WHEY AND LACTIC ACID BACTERIA IN SUMBA MARE’S MILK. JURNAL KAJIAN VETERINER, 10(1), 97-108. https://doi.org/10.35508/jkv.v10i1.7868

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.