KAJIAN SIFAT-SIFAT DUAL PADA RUANG BARISAN l^p

(*Literature Review*)

Ariyanto

Jurusan Matematika, FST, UNDANA

ABSTRACT

Sequence space l^p is defined as a set collection $\sum_{k=1}^{\infty} |x_k|^p < \infty$, for every Sequence $\{x_k\}$ in complex number with $1 \le p < \infty$, while dual- α on sequence space (normed) B is denoted by B^{α} and defined as a set collection $\sum_{k=1}^{\infty} |x_k| y_k < \infty$, for every Sequence $\{x_k\}$ and $\{y_k\}$ in B. Properties and relations between sequence space l^p with dual- α are discussed and provided in theorem form.

Keywords: Sequence, Sequence space l^p , dual- α .

Salah satu cabang yang menjadi kajian matematika analisis adalah ruang barisan. [Sri Daru Unoningsih, 2002] memperkenalkan delapan ruang barisan klasik yang definisidefinisinya disajikan sebagai berikut. Koleksi semua barisan kompleks dinotasikan dengan S atau $S = \left\{ \stackrel{\circ}{x} = \{x_k\} : x_k \in C \right\}$. Kedelapan barisan klasik tersebut adalah sebagai berikut.

1.
$$c = \left\{ \hat{x} = \{x_k\} \in S : \text{barisan } \{x_k\} \text{ konvergen} \right\}$$

2.
$$c_0 = \left\{ \hat{x} = \{x_k\} \in S : \text{barisan } \{x_k\} \text{ konvergen ke } 0 \right\}$$

3.
$$bv = \left\{ \hat{x} = \{x_k\} \in S : \sum_{k=1}^{\infty} |x_k - x_{k+1}| < \infty \right\}$$

4.
$$bv_0 = bv \cap c_0$$

5.
$$cs = \left\{ \stackrel{\wedge}{x} = \left\{ x_k \right\} \in S : \sum_{k=1}^{\infty} x_k \text{ konvergen} \right\}$$

6.
$$bs = \left\{ \stackrel{\wedge}{x} = \left\{ x_k \right\} \in S : \left\{ \sum_{k=1}^{\infty} x_k \right\}_{n \ge 1} \in l^{\infty} \right\}$$

7.
$$l^p = \left\{ \stackrel{\wedge}{x} = \{x_k\} \in S : \sum_{k=1}^{\infty} |x_k|^p < \infty \right\}, \text{ untuk } 1 \le p < \infty$$

8.
$$l^{\infty} = \left\{ \stackrel{\wedge}{x} = \left\{ x_k \right\} \in S : \underset{k \ge 1}{\text{bat}} | x_k | < \infty \right\}$$

Dari delapan ruang barisan klasik di atas yang menjadi fokus kajian pada tulisan ini adalah ruang barisan l^p . Di dalam analisis fungsional dikenal dual Banach pada ruang bernorma, dan [Lee Peng Yee, 1989] memperkenalkan pula pengertian dual- α , dual- β , dan dual- γ pada ruang barisan (bernorma). Selanjutnya, tulisan ini hanya akan mengkaji kaitan antara ruang barisan l^p dengan dual Banach dan dual- α , sedangkan kaitannya dengan dual- β dan dual- γ akan dikaji pada kesempatan yang lain.

Teori Dasar

Di dalam bagian ini akan dibahas tentang pengertian-pengertian dasar yang akan digunakan sebagai landasan pada pembicaraan pembahasan berikutnya.

Definisi 1: Diketahui B ruang linear atas C atau R.

Fungsi $\|.\|: B \to R$ disebut norma bila memenuhi aksioma berikut :

$$(N_1) \|x\| \ge 0$$
 untuk setiap $x \in B$, dan $\|x\| = 0 \Leftrightarrow x = \theta$.

$$(N_2)$$
 $\|\alpha.x\| = |\alpha| \|x\|$ untuk setiap $x \in B$ dan skalar α .

$$(N_3) \|x + y\| \le \|x\| + \|y\|$$
 untuk setiap $x, y \in B$.

Ruang linear B yang diperlengkapi norma dinamakan **ruang bernorma** dan dituliskan dengan $(B,\|.\|)$ atau B saja.

Teorema 2 : Setiap ruang bernorma B merupakan ruang metrik, dengan d(x, y) = ||x - y|| untuk setiap $x, y \in B$.

Definisi 3 : Ruang bernorma B dikatakan lengkap jika setiap barisan Cauchy di dalamnya konvergen, dan ruang bernorma lengkap disebut **ruang Banach.**

Teorema 4 : Diketahui B dan B_1 masing-masing ruang bernorma. Jika $T: B \to B_1$ linear, maka pernyataan berikut ekuivalen :

- (1) T kontinu pada B.
- (2) T kontinu $di x_0 \in B$.
- (3) T kontinu $di \theta \in B$.
- (4) $||T(x)|| : x \in B \text{ dan } ||x|| \le 1$ terbatas.
- (5) Terdapat bilangan konstanta $M \ge 0$ sehingga $||T(x)|| \le M.||x||$, untuk setiap $x \in B$.

Selanjutnya koleksi semua fungsi linear dan kontinu dari ruang bernorma B ke ruang bernorma B_1 dinotasikan dengan $L_C(B, B_1)$.

Teorema 5 : Diketahui B dan B_1 masing-masing ruang bernorma. $L_C(B, B_1)$ lengkap (ruang Banach) jika B_1 lengkap (ruang Banach).

Dual Banach dari ruang bernorma dinotasikan dengan B^* , yaitu koleksi semua fungsional linear dan kontinu dari ruang bernorma B ke lapangannya.

Teorema 6 : Ruang dual dari ruang bernorma B yaitu B^* merupakan ruang Banach. [Berberian, 1961]

Bukti untuk empat teorema di atas ada dibuku di dalam daftar pustaka.

PENGKAJIAN

Norma pada ruang barisan l^p dan l^∞ masing-masing definisinya diberikan sebagai berikut.

Definisi 7 : Diberikan S koleksi semua barisan bilangan kompleks.

1. Untuk $1 \le p < \infty$ didefinisikan $l^p = \left\{ \stackrel{\wedge}{x} = \{x_k\} \in S : \sum_{k=1}^{\infty} \left| x_k \right|^p < \infty \right\}$ yang disebut dengan **ruang barisan** l^p , dan norma pada l^p adalah $\left\| \stackrel{\wedge}{x} \right\|_{\infty} = \left\{ \sum_{k=1}^{\infty} \left| x_k \right|^p \right\}^{\frac{1}{p}}$.

2. Untuk $p = \infty$ didefinisikan $l^{\infty} = \left\{ \hat{x} = \{x_k\} \in S : \underset{k \ge 1}{\text{bat}} | x_k| < \infty \right\}$, dan norma pada l^{∞} , yaitu $\left\| \hat{x} \right\| = \underset{k \ge 1}{\text{bat}} | x_k|$.

Jelas bahwa berlaku sifat $l^1 \subset l^p \subset l^q \subset l^\infty$ dengan 1 .

Pembahasan struktur ruang barisan l^p dimulai dengan tiga lemma berikut ini.

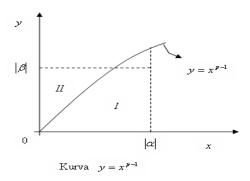
Lemma 8 (Lemma Young) : Jika p dan q dua bilangan real sehingga 1 < p, $q < \infty$ dan

$$\frac{1}{p} + \frac{1}{q} = 1$$
, maka untuk setiap dua bilangan α dan β diperoleh $|\alpha \beta| \le \frac{|\alpha|^p}{p} + \frac{|\beta|^q}{q}$.

Bukti:
$$\frac{1}{p} + \frac{1}{q} = 1 \Leftrightarrow p + q = pq \Leftrightarrow (p-1)q = p \Leftrightarrow (q-1)p = q$$

Selanjutnya dibentuk fungsi kontinu $y = x^{p-1}$ atau $x = y^{\frac{1}{p-1}} = y^{q-1}$, untuk $x \ge 0$.

Oleh karena itu (lihat gambar berikut ini)



Diperoleh,

 $\left|\alpha \beta\right| = \left|\alpha\right| \left|\beta\right| \le \text{Luas daerah } I + \text{Luas daerah } II.$

Jadi,
$$|\alpha \beta| \le \int_0^{|\alpha|} x^{p-1} dx + \int_0^{|\beta|} y^{q-1} dx = \frac{|\alpha|^p}{p} + \frac{|\beta|^q}{q} . \blacksquare$$

Lebih lanjut, dengan menggunakan Lemma Young diperoleh dua lemma berikut ini.

Lemma 9 : (1) Untuk setiap $\hat{x} = \{x_k\} \in l^1$ dan $\hat{y} = \{y_k\} \in l^{\infty}$ diperoleh

$$\left| \sum_{k=1}^{\infty} x_k \ \overline{y_k} \right| = \sum_{k=1}^{\infty} \left| x_k \ \overline{y_k} \right| \le \left\| \stackrel{\wedge}{x} \right\|_{1} \left\| \stackrel{\wedge}{y} \right\|_{\alpha}$$

(2) Jika 1 < p, $q < \infty$ dan $\frac{1}{p} + \frac{1}{q} = 1$, maka untuk setiap $\hat{x} = \{x_k\} \in l^p$ dan $\hat{y} = \{y_k\} \in l^q$

maka berlaku
$$\left| \sum_{k=1}^{\infty} x_k \overline{y_k} \right| \le \sum_{k=1}^{\infty} \left| x_k \overline{y_k} \right| \le \left\| \stackrel{\wedge}{x} \right\|_{p} \left\| \stackrel{\wedge}{y} \right\|_{q}$$
.

Bukti: (1) Karena $\hat{x} = \{x_k\} \in l^1$ dan $\hat{y} = \{y_k\} \in l^{\infty}$, maka $\sum_{k=1}^{\infty} |x_k| < \infty$ bat $|y_k| < \infty$. Oleh

karena itu diperoleh
$$\left|\sum_{k=1}^{\infty} x_k \ \overline{y_k}\right| = \sum_{k=1}^{\infty} \left|x_k \ \overline{y_k}\right| \le \left(\sum_{k=1}^{\infty} \left|x_k\right|\right) \left(\max_{k \ge 1} \left|y_k\right|\right) \le \left\|\stackrel{\wedge}{x}\right\|_1 \left\|\stackrel{\wedge}{y}\right\|_{\infty}.$$

(2) Karena
$$\hat{x} = \{x_k\} \in l^p$$
 dan $\hat{y} = \{y_k\} \in l^q$, maka $\sum_{k=1}^{\infty} |x_k|^p < \infty$ dan $\sum_{k=1}^{\infty} |y_k|^q < \infty$.

Selanjutnya, berdasarkan Lemma Young maka diperoleh,

$$\frac{\left|x_{k}\right|}{\left\|\stackrel{\wedge}{x}\right\|_{p}} \frac{\left|y_{k}\right|}{\left\|\stackrel{\wedge}{y}\right\|_{q}} \leq \frac{1}{p} \frac{1}{\left\|\stackrel{\wedge}{x}\right\|_{p}} \left|x_{k}\right|^{p} + \frac{1}{q} \frac{1}{\left\|\stackrel{\wedge}{y}\right\|_{q}} \left|y_{k}\right|^{q}, \text{ untuk setiap } k.$$

Oleh karena itu dengan menjumlah untuk setiap k, maka diperoleh

$$\frac{1}{\left\| \stackrel{\wedge}{x} \right\|_{p} \left\| \stackrel{\wedge}{y} \right\|_{q}} \sum_{k=1}^{\infty} \left| x_{k} \overline{y_{k}} \right| \leq \frac{1}{p} \frac{1}{\left\| \stackrel{\wedge}{x} \right\|_{p}^{p}} \sum_{k=1}^{\infty} \left| x_{k} \right|^{p} + \frac{1}{q} \frac{1}{\left\| \stackrel{\wedge}{y} \right\|_{q}^{q}} \sum_{k=1}^{\infty} \left| y_{k} \right|^{q} = \frac{1}{p} + \frac{1}{q} = 1$$

atau terbukti bahwa $\left|\sum_{k=1}^{\infty} x_k \overline{y_k}\right| \le \left\|\stackrel{\wedge}{x}\right\|_p \left\|\stackrel{\wedge}{y}\right\|_q$.

Lemma 10 : Jika $1 \le p \le \infty$ maka untuk setiap $\hat{x} = \{x_k\}, \hat{y} = \{y_k\} \in l^p$ berlaku bahwa

$$\left\| \stackrel{\wedge}{x} + \stackrel{\wedge}{y} \right\|_{p} \le \left\| \stackrel{\wedge}{x} \right\|_{p} + \left\| \stackrel{\wedge}{y} \right\|_{p}.$$

Bukti: (1) Untuk $p = \infty$. Untuk setiap $\hat{x} = \{x_k\}, \hat{y} = \{y_k\} \in l^{\infty}$ diperoleh

$$\begin{aligned} \left\| \hat{x} + \hat{y} \right\|_{\infty} &= \left\| \left\{ x_{k} \right\} + \left\{ y_{k} \right\} \right\|_{\infty} &= \left\| \left\{ x_{k} + y_{k} \right\} \right\|_{\infty} = \text{bat } \left| x_{k} + y_{k} \right| \\ &\leq \text{bat } \left(\left| x_{k} \right| + \left| y_{k} \right| \right) \leq \text{bat } \left| x_{k} \right| + \text{bat } \left| y_{k} \right| = \left\| \hat{x} \right\|_{\infty} + \left\| \hat{y} \right\|_{\infty}. \end{aligned}$$

(2) Untuk p = 1. Untuk setiap $\hat{x} = \{x_k\}, \hat{y} = \{y_k\} \in l^1$ diperoleh

$$\begin{aligned} \left\| \hat{x} + \hat{y} \right\|_{1} &= \left\| \left\{ x_{k} \right\} + \left\{ y_{k} \right\} \right\|_{1} &= \left\| \left\{ x_{k} + y_{k} \right\} \right\|_{1} &= \sum_{k=1}^{\infty} \left| x_{k} + y_{k} \right| \\ &\leq \sum_{k=1}^{\infty} \left(\left| x_{k} \right| + \left| y_{k} \right| \right) &= \sum_{k=1}^{\infty} \left| x_{k} \right| + \sum_{k=1}^{\infty} \left| y_{k} \right| &= \left\| \hat{x} \right\|_{1} + \left\| \hat{y} \right\|_{1}. \end{aligned}$$

(3) Untuk $1 . Untuk setiap <math>\hat{x} = \{x_k\}, \hat{y} = \{y_k\} \in l^p$ diperoleh

$$|x_k + y_k|^p = |x_k + y_k| |x_k + y_k|^{p-1} \le (|x_k| + |y_k|) |x_k + y_k|^{p-1}$$

$$= |x_k| |x_k + y_k|^{p-1} + |y_k| |x_k + y_k|^{p-1}, \text{ untuk setiap } k.$$

Dijumlah untuk semua k, diambil bilangan real q dengan $\frac{1}{q} = 1 - \frac{1}{p}$, dan dengan menggunakan Lemma 9 maka diperoleh

$$\begin{split} \sum_{k=1}^{\infty} \left| x_{k} + y_{k} \right|^{p} &\leq \sum_{k=1}^{\infty} \left| x_{k} \right| \left| x_{k} + y_{k} \right|^{p-1} + \sum_{k=1}^{\infty} \left| y_{k} \right| \left| x_{k} + y_{k} \right|^{p-1} \\ &\leq \left\{ \sum_{k=1}^{\infty} \left| x_{k} \right|^{p} \right\}^{\frac{1}{p}} \left\{ \sum_{k=1}^{\infty} \left| x_{k} + y_{k} \right|^{(1-p)q} \right\}^{\frac{1}{q}} + \left\{ \sum_{k=1}^{\infty} \left| y_{k} \right|^{p} \right\}^{\frac{1}{p}} \left\{ \sum_{k=1}^{\infty} \left| x_{k} + y_{k} \right|^{(1-p)q} \right\}^{\frac{1}{q}} \\ &= \left\| \hat{x} \right\|_{p} \left\{ \sum_{k=1}^{\infty} \left| x_{k} + y_{k} \right|^{p} \right\}^{\frac{1}{q}} + \left\| \hat{y} \right\|_{p} \left\{ \sum_{k=1}^{\infty} \left| x_{k} + y_{k} \right|^{p} \right\}^{\frac{1}{q}} \end{split}$$

$$= \left(\left\| \stackrel{\wedge}{x} \right\|_{p} + \left\| \stackrel{\wedge}{y} \right\|_{p} \right) \left\{ \sum_{k=1}^{\infty} \left| x_{k} + y_{k} \right|^{p} \right\}^{\frac{1}{q}}$$

atau terbukti bahwa

$$\left\| \stackrel{\wedge}{x} + \stackrel{\wedge}{y} \right\|_{p} = \left\{ \sum_{k=1}^{\infty} \left| x_{k} + y_{k} \right|^{p} \right\}^{\frac{1}{p}} \leq \left\| \stackrel{\wedge}{x} \right\|_{p} + \left\| \stackrel{\wedge}{y} \right\|_{p}. \blacksquare$$

Teorema 11 : Untuk setiap p dengan $1 \le p \le \infty$, maka l^p merupakan ruang Banach terhadap norma $\left\| \hat{x} \right\|_p = \left\{ \sum_{k=1}^{\infty} \left| x_k \right|^p \right\}^{\frac{1}{p}}$.

Bukti: Memperlihatkan bahwa l^p merupakan ruang bernorma terhadap norma $\left\| \stackrel{\wedge}{x} \right\|_p = \left\{ \sum_{k=1}^{\infty} \left| x_k \right|^p \right\}^{\frac{1}{p}}$ cukup jelas. Jadi tinggal memperlihatkan bahwa ruang bernorma

tersebut lengkap. Diambil sebarang barisan Cauchy $\left\{x^{n}\right\} \subset l^p$

dengan
$$x^{(n)} = \{x_k^{(n)}\} = \{x_1^{(n)}, x_2^{(n)}, \dots\}$$
 (a).

Untuk setiap bilangan $\varepsilon>0$ terdapat bilangan asli n_0 sehingga untuk setiap m , $n\geq n_0$ berlaku

$$\left\| x^{(m)} - x^{(n)} \right\|_{p} < \frac{\varepsilon}{4} \text{ atau } \sum_{k=1}^{\infty} \left| x_{k}^{(m)} - x_{k}^{(n)} \right| < \left(\frac{\varepsilon}{4}\right)^{p}$$

Hal ini berakibat untuk setiap m, $n \ge n_0$ berlaku $\left|x_k^{(m)} - x_k^{(n)}\right| < \frac{\mathcal{E}}{4}$ untuk setiap k (b). Jadi, untuk setiap k diperoleh barisan bilangan Cauchy $\left\{x_k^{(n)}\right\}$ di dalam bilangan real yang lengkap. Oleh karena itu ada x_k sehingga $\lim_{n \to \infty} x_k^{(n)} = x_k$ atau $\lim_{n \to \infty} \left|x_k^{(n)} - x_k\right| = 0$. Berdasarkan (b) diperoleh untuk $n \ge n_0$ berlaku

$$\left| x_k^{(n)} - x_k \right| = \lim_{m \to \infty} \left| x_k^{(n)} - x_k^{(m)} \right| < \frac{\mathcal{E}}{4}.$$

Selanjutnya dibentuk barisan $\hat{x} = \{x_k\}$, menurut Lemma 10 maka diperoleh

$$\left\{ \sum_{k=1}^{\infty} \left| x_{k} \right|^{p} \right\}^{\frac{1}{p}} = \left\{ \sum_{k=1}^{\infty} \left| x_{k} - x_{k}^{(n)} + x_{k}^{(n)} \right|^{p} \right\}^{\frac{1}{p}} = \lim_{m \to \infty} \left\{ \sum_{k=1}^{\infty} \left| x_{k}^{(m)} - x_{k}^{(n)} + x_{k}^{(n)} \right|^{p} \right\}^{\frac{1}{p}}$$

$$\leq \lim_{m \to \infty} \left\{ \sum_{k=1}^{\infty} \left| x_k^{(m)} - x_k^{(n)} \right|^p \right\}^{\frac{1}{p}} + \left\{ \sum_{k=1}^{\infty} \left| x_k^{(n)} \right|^p \right\}^{\frac{1}{p}} < \infty$$
 (c).

yang berarti $\hat{x}=\{x_k\}\in l^p$. Lebih lanjut, berdasarkan ketidaksamaan (b), diperoleh untuk $n\geq n_0$ berlaku

$$\left\| \hat{x} - \hat{x}^{(n)} \right\|_{p} = \left\{ \sum_{k=1}^{\infty} \left| x_{k} - x_{k}^{(n)} \right|^{p} \right\}^{\frac{1}{p}} = \lim_{m \to \infty} \left\{ \sum_{k=1}^{\infty} \left| x_{k}^{(m)} - x_{k}^{(n)} \right|^{p} \right\}^{\frac{1}{p}} < \frac{\varepsilon}{4}$$
 (d).

yang berarti barisan $\begin{Bmatrix} x \\ x \end{Bmatrix} \subset l^p$ konvergen ke x. Berdasarkan (c) dan (d), terbukti bahwa

barisan Cauchy $\left\{x^{(n)}\right\} \subset l^p$ konvergen ke $x = \left\{x_k\right\} \in l^p$ atau terbukti bahwa l^p

merupakan ruang Banach terhadap norma $\left\| \hat{x} \right\|_p = \left\{ \sum_{k=1}^{\infty} |x_k|^p \right\}^{\frac{1}{p}}$.

Teorema 12 : Jika $1 dan <math>1 < q < \infty$ dengan $\frac{1}{p} + \frac{1}{q} = 1$, maka $(l^p)^* = l^q$.

Bukti : Pertama akan ditunjukan bahwa $l^q \subset (l^p)^*$, yaitu setiap anggota l^q menentukan tepat satu fungsional linear kontinu pada l^p . Diambil sebarang $\stackrel{\circ}{y} = \{y_k\} \in l^q$ dan dibentuk fungsional A_y pada l^p dengan rumus :

$$A_y(x) = \sum_{k=1}^{\infty} x_k \overline{y_k}$$
, untuk setiap $x = \{x_k\} \in l^p$.

 A_y linear, sebab untuk setiap $\stackrel{\wedge}{x}=\{x_k\},\stackrel{\wedge}{z}=\{z_k\}$ e l^p dan skalar α diperoleh

$$A_y(\alpha \hat{x}) = \sum_{k=1}^{\infty} (\alpha x_k) \overline{y_k} = \alpha \sum_{k=1}^{\infty} x_k \overline{y_k} = \alpha A_y(\hat{x}), dan$$

$$A_{y}(\hat{x} + \hat{z}) = \sum_{k=1}^{\infty} (x_{k} + z_{k}) \overline{y_{k}} = \sum_{k=1}^{\infty} x_{k} \overline{y_{k}} + \sum_{k=1}^{\infty} z_{k} \overline{y_{k}} = A_{y}(\hat{x}) + A_{y}(\hat{z})$$

 A_y kontinu, sebab menurut Lemma 10 berlaku

$$\left| A_{y} \begin{pmatrix} \hat{x} \end{pmatrix} \right| = \left| \sum_{k=1}^{\infty} x_{k} \overline{y_{k}} \right| \leq \left\| \hat{y} \right\|_{p} \left\| \hat{x} \right\|_{p}.$$

Jadi terbukti bahwa setiap $\stackrel{\wedge}{y} \in l^q$ menentukan tepat satu fungsional linear dan kontinu A_y pada l^p , $A_y \in (l^p)^*$. Jadi terbukti $l^q \subset (l^p)^*$.

Kedua, akan ditunjukkan sebaliknya yaitu $\left(l^{p}\right)^{*} \subset l^{q}$ atau setiap fungsional linear kontinu A pada l^{p} atau $A \in \left(l^{p}\right)^{*}$ menentukkan dengan tunggal suatu vektor $\overset{\circ}{y} \in l^{q}$. Setiap $\overset{\circ}{x} = \{x_{k}\} \in l^{p}$ dapat dituliskan sebagai $\overset{\circ}{x} = \sum_{k=1}^{\infty} x_{k} \overset{\circ}{\mathrm{e}_{k}}$ dengan $\overset{\circ}{e_{k}}$ adalah barisan bilangan real yang unsur ke-k sama dengan 1 dan semua unsur lainnya sama dengan 0, jadi

$$e_{k}^{(1)} = (0, 0, \dots, 1, 0, 0, \dots)$$

 $\operatorname{dan}\left\{ \stackrel{\circ}{e_{k}}
ight\}$ merupakan basis l^{p} . Karena A linear, diperoleh

$$A\begin{pmatrix} \hat{x} \end{pmatrix} = A\left(\sum_{k=1}^{\infty} x_k \ \hat{e_k}\right) = \sum_{k=1}^{\infty} x_k \ A\left(\hat{e_k}\right)$$

yang menyatakan bahwa $A \begin{pmatrix} \hat{x} \end{pmatrix}$ merupakan kombinasi linear tak hingga terhadap barisan bilangan $\left\{A \begin{pmatrix} \hat{e}_k \end{pmatrix}\right\}$. Jadi $A \begin{pmatrix} \hat{x} \end{pmatrix}$ ditentukan atau bergantung pada barisan bilangan $\left\{A \begin{pmatrix} \hat{e}_k \end{pmatrix}\right\}$. Lebih lanjut, karena A fungsional linear dan kontinu (terbatas) maka $A \begin{pmatrix} \hat{x} \end{pmatrix} < \infty$. Sementara itu, menurut ketidaksamaan Cauchy-Schartz berlaku

$$\left| A \begin{pmatrix} \hat{x} \end{pmatrix} \right| = \left| \sum_{k=1}^{\infty} x_k A \begin{pmatrix} \hat{e}_k \end{pmatrix} \right| \le \left\{ \sum_{k=1}^{\infty} \left| x_k \right|^p \right\}^{\frac{1}{p}} \left\{ \sum_{k=1}^{\infty} \left| A \begin{pmatrix} \hat{e}_k \end{pmatrix} \right|^q \right\}^{\frac{1}{q}}$$

$$= \left\| \hat{x} \right\|_p \left\{ \sum_{k=1}^{\infty} \left| A \begin{pmatrix} \hat{e}_k \end{pmatrix} \right|^q \right\}^{\frac{1}{q}}.$$

Oleh karena itu haruslah

$$\left| A \begin{pmatrix} x \\ x \end{pmatrix} \right| \leq \left\| x \right\|_{p} \left\{ \sum_{k=1}^{\infty} \left| A \begin{pmatrix} x \\ e_{k} \end{pmatrix} \right|^{q} \right\}^{\frac{1}{q}} < \infty,$$

yang berarti haruslah $\sum_{k=1}^{\infty} \left| A \begin{pmatrix} \circ \\ e_k \end{pmatrix} \right|^q < \infty$ atau barisan-barisan bilangan $\hat{y} = \left\{ A \begin{pmatrix} \circ \\ e_k \end{pmatrix} \right\} \in l^q$.

Jadi terbuktilah bahwa jika A suatu fungsional linear kontinu pada l^p maka terdapat vektor $\hat{y} = \left\{ A \begin{pmatrix} \hat{e}_k \end{pmatrix} \right\} \in l^q$ sehingga untuk setiap $\hat{x} \in l^p$ berlaku

$$\left| A \begin{pmatrix} \hat{x} \\ x \end{pmatrix} \right| \leq \left\| \hat{x} \right\|_{p} \left\| \hat{y} \right\|_{q}$$

atau terbukti bahwa $(l^p)^* \subset l^q$. Berdasarkan hasil langkah pertama dan hasil langkah kedua dapat disimpulkan bahwa $(l^p)^* = l^q$.

Definisi 13: Jika B ruang barisan (bernorma), maka didefinisikan

$$\mathbf{B}^{\alpha} = \left\{ \stackrel{\wedge}{x} = \left\{ x_{k} \right\} : \sum_{k=1}^{\infty} \left| x_{k} y_{k} \right| < \infty, \, \forall \left\{ y_{k} \right\} \in \mathbf{B} \right\} \text{ yang disebut dual-} \alpha \text{ untuk } \mathbf{B}.$$

Teorema 14: Diketahui ruang barisan l^p dengan $1 \le p \le \infty$.

1. Untuk p = 1 diperoleh

$$(l^1)^{\alpha} = l^{\infty} \operatorname{dan} (l^{\infty})^{\alpha} = l^1$$

2. Untuk 1 diperoleh

$$(l^p)^{\alpha} = l^q$$
 dengan q konjugat p .

Bukti: (1) Diambil sebarang barisan $\hat{y} = \{y_k\} \in (l^1)^\alpha$, jadi $\sum_{k=1}^\infty |x_k| y_k| < \infty$, untuk setiap $\{x_k\} \in l^1$. Jelas $\sum_{k=1}^\infty |x_k| y_k| = \sum_{k=1}^\infty |x_k| |y_k| \le \sum_{k=1}^\infty |x_k| \sup |y_k| < \infty \Leftrightarrow \sup_{k\ge 1} |y_k| < \infty$. Dengan kata lain $\hat{y} = \{y_k\} \in l^\infty$. Jadi $(l^1)^\alpha \subset l^\infty$. Sebaliknya diambil sebarang $\hat{y} = \{y_k\} \in l^\infty$, untuk setiap $\{x_k\} \in l^1$. Jadi berlaku $\sum_{k=1}^\infty |x_k| y_k| \le \sum_{k=1}^\infty |x_k| \sup |y_k| < \infty$. Dengan demikian $\hat{y} = \{y_k\} \in (l^1)^\alpha$. Dengan demikian $l^\infty \subset (l^1)^\alpha$. Dari keseluruhan uraian di atas terbukti bahwa $(l^1)^\alpha = l^\infty$.

Selanjutnya, diambil sebarang barisan $\hat{y} = \{y_k\} \in (l^\infty)^\alpha$. Jadi $\sum_{k=1}^\infty |x_k| y_k < \infty$, untuk setiap $\{x_k\} \in l^\infty$. Jelas bahwa $\sum_{k=1}^\infty |x_k| y_k \le \sup_{k\ge 1} |x_k| \sum_{k=1}^\infty |y_k| < \infty \Leftrightarrow \sum_{k=1}^\infty |y_k| < \infty$. Dengan kata lain

(2) Langkah pertama. Diambil sebarang $\hat{x} = \{x_k\} \in (l^p)^\alpha$. Jadi $\sum_{k=1}^\infty |x_k| y_k < \infty$, untuk setiap $\hat{y} = \{y_k\} \in l^p$. Berdasarkan Lemma 10 maka diperoleh

 $\sum_{k=1}^{\infty} \left| x_k \ y_k \right| \leq \left\| \ \hat{x} \ \right\|_p \left\| \ \hat{y} \ \right\|_q < \infty \Leftrightarrow \left\| \ \hat{y} \ \right\|_q < \infty \ , \ \text{dengan} \ \ q \ \text{ konjugant } \ p \ . \ \text{Dengan kata lain}$ $\left\{ x_k \right\} \in l^q \ . \ \text{Jadi} \ \left(l^p \right)^{\alpha} \subset l^q \ .$

Langkah kedua. Diambil sebarang $\{x_k\} \in l^q$, untuk setiap $\stackrel{\circ}{y} = \{y_k\} \in l^p$ dan q konjugat p maka berlaku $\sum_{k=1}^{\infty} |x_k| y_k | \leq \|\stackrel{\circ}{x}\|_p \|\stackrel{\circ}{y}\|_q < \infty$ (menurut Lemma 10). Dengan kata lain $\{x_k\} \in (l^p)^{\alpha}$. Jadi $l^q \subset (l^p)^{\alpha}$. Berdasarkan hasil langkah pertama dan hasil langkah kedua disimpulkan bahwa $(l^p)^{\alpha} = l^q$.

Akibat 15: Diberikan ruang barisan l^p dengan $1 \le p \le \infty$, maka $(l^p)^{\alpha\alpha} = l^p$.

Bukti:

Jelas bahwa $(l^1)^{\alpha\alpha} = ((l^1)^{\alpha})^{\alpha} = (l^{\infty})^{\alpha} = l^1$ dan $(l^{\infty})^{\alpha\alpha} = ((l^{\infty})^{\alpha})^{\alpha} = (l^1)^{\alpha} = l^{\infty}$. Selanjutnya, $(l^p)^{\alpha\alpha} = ((l^p)^{\alpha})^{\alpha} = (l^q)^{\alpha} = l^p$ dengan q konjugat p.

PENUTUP

Simpulan

Berdasarkan keseluruhan hasil pembahasan di atas, diambil beberapa kesimpulan sebagai berikut :

- 1. Ruang barisan l^p terhadap norma $\left\| \stackrel{\wedge}{x} \right\|_p = \left\{ \sum_{k=1}^{\infty} |x_k|^p \right\}^{\frac{1}{p}}$ merupakan ruang Banach.
- 2. Untuk p = 1, berlaku sifat $(l^1)^{\alpha} = l^{\infty}$ dan $(l^{\infty})^{\alpha} = l^1$.
- 3. Untuk $1 , berlaku sifat <math>(l^p)^\alpha = l^q$ dengan q konjugat p.

4. Untuk $1 \le p \le \infty$, berlaku sifat $(l^p)^{\alpha\alpha} = l^p$.

DAFTAR PUSTAKA

Berberian, S.K. 1961. Introduction to Hilbert Space. Oxford University Press. New York.

Kamthan, P.K., and Manjol Gupta. 1981. Sequence Space and Series. Marcell Dekker Inc.

Kreyszig, E. 1978. *Introductory functional Analysis with Application*. John Wiley&Sons Inc. New York.

Maddox, I.J. 1971. Elements of Functional Analysis. Cambridge At The University. USA.

Unoningsih, D.S. 2002. *Materi Kuliah Kapita Selekta Analisis Program S1*. FMIPA UGM. Yogyakarta.

Yee, P.L. 1989. Zeller Theory and Classical Sequence Space. Lee Kong Chian Centre for Mathematical Research.