SISTEM VISUALISASI DATA SERTIFIKASI KARYAWAN BERBASIS WEBSITE MENGGUNAKAN METODE NAIVE BAYES

Djeliyana Talaba¹, I Wayan Sudarsana², Iman Al Fajri³

^{1,2,3} Program Studi Matematika Jurusan Matematika FMIPA Universitas Tadulako Email: <u>djeliyanat@gmail.com</u>¹, <u>sudarsanaiwayan@yahoo.co.id</u>², <u>iman.alfajri@gmail.com</u>³

Abstrak

Sertifikasi karyawan dalam sebuah perusahaan merupakan salah satu aspek penting dalam dunia kerja yang akan menunjukkan kompetensi dan kualitas seorang karyawan. Namun, untuk mendapatkan hasil yang sesuai, perusahaan menggunakan sistem pendukung dari analis data. Penelitian ini bertujuan untuk membuat sistem visualisasi data berbasis website yang dapat menyajikan informasi sertifikasi karyawan secara jelas, mendapatkan hasil analisis data karyawan untuk pengambilan keputusan sertifikasi dengan menggunakan metode Naive Bayes. Penelitian ini dilakukan dalam 2 tahap, yaitu tahap pelatihan dan pengujian dengan menggunakan 5 atribut. Pengolahan data dilakukan dengan menggunakan 59 data training dan 59 data testing. Penelitian ini menghasilkan sebuah sistem yang dapat membantu dalam pengambilan keputusan kelayakan karyawan yang ingin mengikuti sertifikasi menggunakan metode naive bayes dan memvisualisasikannya, hasil yang didapat dari sistem tersebut adalah 10 data yang tidak layak mengikuti sertifikasi dengan tingkat keakuratan sebesar 96%.

Kata kunci: Algoritma Naive Bayes, Sertifikasi, Website

Abstract

Employee certification in a company is one of the important aspects in the world of work that will show the competence and quality of an employee. However, to get the appropriate results, the company uses a support system from data analysts. This research aims to create a website-based data visualization system that can present employee certification information clearly, get the results of employee data analysis for certification decision making using the Naive Bayes method. This research was conducted in 2 stages, namely the training and testing stages using 5 attributes. Data processing was carried out using 59 training data and 59 testing data. This research produces a system that can assist in making decisions on the eligibility of employees who want to take certification using the naive bayes method and visualize it, the results obtained from the system are 10 data that are not eligible for certification with an accuracy of 96%.

Keywords: Naive Bayes Algorithm, Certification, Website

PENDAHULUAN

Employee certification is one of the important aspects in the world of work that shows a person's competence and quality in a certain field In a company, information about employee certification can be an important reference in making decisions related to project assignments, promotions, or career development

PT United Tractors Tbk (UT) is a subsidiary of PT Astra Internasional Tbk (Astra) which operates in the fields of construction machinery, mining contractors, coal mining, gold mining, energy, and construction industries in Indonesia (TRACTORS, 2024) Because it operates in the construction sector, this company requires competency certification to show the quality of its employees before they work in the field As one of the large companies, PT United Tractors Tbk (UT) has a significant number of employees This encourages companies to require data visualisation

related to the certification

In the context of employee certification data, there are still not many studies that combine data visualisation with the right analysis methods In this study, the researcher wanted to create a website that can provide certification recommendations that are in accordance with employee profiles, facilitate data analysis, and make it easier for management to make decisions related to employee eligibility and can visualise it using the naïve Bayes method

Based on the explanation above, the author is interested in conducting research using the naive bayes method with the Decision Support System (DSS) system because there is no system that focuses on employee certification The use of this method is expected to help better decision-making in terms of project assignments, promotions, or career development of employees In addition, the website contains the first feature that can test the feasibility of employee data that wants to take part in certification, the second feature that can appear a certification recommendation that is in accordance with the employee's division and the third feature can visualize employee certification data With this system, it is hoped that it can help manage employee certification data more efficiently and effectively.

METHOD

The location of data collection was carried out at the office of PT United Tractors Tbk (UT) which is located in Cakung, East Jakarta And the place of research was carried out at the ROPD Laboratory of Tadulako University in Tondo, East Palu. The tools and materials used in this study include Lenovo Laptop, Microsoft Excel, Xampp, Php My Admin, Visual Studio Code, MySql, and boostrap. The data source used in this study is in the form of secondary data obtained from PT United Tractors Tbk (UT) located in Cakung, East Jakarta in the form of a database Where the data is employee data who want to take part in certification.

The procedure in this research are

- a. Reviewing the literature related to problems in decision-making on the eligibility of employees who want to take part in certification and problems in delivering employee certification information.
- b. Formulate problems about decision-making on the eligibility of employees who want to take part in certification and problems in the delivery of employee certification information, as well as apply mathematics as a solution based on literature studies related to previous research
- c. Collect data on employees who want to take part in certification consisting of 5 attributes, namely name, nrp, division, position and length of service.
- d. Data is processed using a method, namely the Naive Bayes method to classify employee eligibility
- e. Getting the results of the research and concluding it.

RESULTS AND DISCUSSION

The result of this study is a website-based employee eligibility decision support system and visualization of the data The classification process is carried out using the Gaussian Naive Bayes Algorithm.

Data Collection

The data used is data taken directly from PT. United Tractors. The data taken is in the form of data on employees who want to take part in certification from January to December 2023. In the data processing process, the data will be divided into 2 parts, namely training data and data testing in order to produce the most optimal performance, so data is divided with a proportion of 50% data for training and 50% data for testing using the Niaive Bayes method (Pahlevi et al., 2023).

Flowchart Naive Bayes

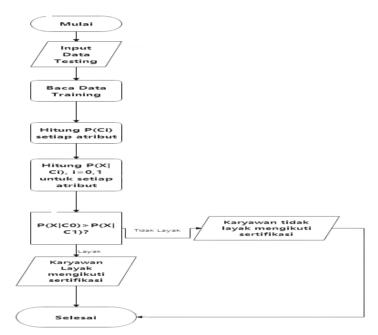


Figure 1. Flowchart Naive bayes

Figure 1 illustrates the flowchart of the Naive Bayes method The process starts with data input, followed by a reading of the attribute data Next, calculate $P(C_i)$ for each attribute in the case of the test data, which includes the attributes of division, job title, and tenure with two classes, ie worthy and not worthy Then, calculate $P(X \mid C_i)$ for each class or attribute, where i = feasible or unfeasible After that, compare the results; if $P(X \mid C_0) > P(X \mid C_1)$, then the conclusion is that C_1 is a class with a division category, position, and service period = feasible.

Data Processing Using the Naive Bayes Method

Data Training

This training data is used to build and train the data mining system that has been created, where the expected target value has been set in this data training. The amount of employee data used is 59 data with 5 attributes for the training process itself. Of the 59 data used, it is known that the number of

C_0 classes (Not Feasible) is 10 data and the number of C_(1) (Feasible) classes is 49 data. Then what is calculated is the number of frequencies of the class that appears divided by the total dataset:

P(C_0)=10/59=0.1695 Unworthy class P(C_1)=49/59=0.8305 decent class

From the calculation above, the probability of the unworthy class is 0.1695 and the decent class is 0.8305. After calculating the class probability, the next step is to determine the conditional probability value for each class $P(X \mid Ci)$, where i = 0.1, and for each attribute of the input data sample. The following two attributes, namely division and position, are included in the categorical type probability, while the other attribute, namely the length of service, is included in the numerical type probability.

To calculate the probability of each attribute can be done in the following way.

$P(Chcu C_0) = \frac{0}{10} = 0,000$	$P(AST C_0) = \frac{3}{10} = 0,300$
$P(Chcu C_1) = \frac{7}{49} = 0,143$	$P(AST C_1) = \frac{10}{49} = 0,204$

The results of the calculation of the probability of division and position attributes are presented in table 1 and table 2.

Divided	Class	5	Probability		
	Not Eligible	Proper	Not Eligible	Proper	
Chcu	0	7	0,000	0,143	
Cau	0	3	0,000	0,061	
Cfa	0	9	0,000	0,184	
:	:	:	:	:	
Cgs	6	15	0,600	0,306	

Table 1. Division Attribute Probability

Position		Class	Probability		
	Proper	Not Eligble	Proper	Not Eligble	
AST	10	3	0,204	0,300	
DH	3	0	0,061	0,000	
:	:	:	:	:	
TM	21	4	0,429	0,400	

Table 2. Probability of Position Attributes

in the probability table for division and position attributes, it can be seen that there are many 0 values, this is an anomaly because in the Naive Bayes method, the value of 0 indicates probability does not occur so there should be no 0 value, so it is overcome with the Laplacian Correction technique, to ensure that the probability value is not 0 Therefore, in correcting the class with a value of 0 in table 1 and table 2 above, calculations are carried out using the Laplacian Correction technique in accordance with the following equation formula:

$$P(c,t) = \frac{1 + N(ct,D)}{N(c,D) + |V|}$$

Attribute	P (Not Eligible)	P(Proper)		
CHCU	0,053	0,138		
CAU	0,053	0,069		
:	:	:		
CGS	0,368	0,276		

Table 3. Results of Division Attribute Calculation using laplacian correction technique

Table 4. The results of the calculation of PositionAttributes using the laplacian correction technique

Atribute	P(Proper)	P(Not Eligible)
AST	0,2	0,25
DH	0,073	0,063
:	:	:
TM	0,400	0,313

As explained earlier, the attribute of service life is a numerical type of probability Where the probability with this type is only looking for the mean value and standard deviation Therefore, the resulting mean and standard deviation values can be seen in the following tables 5 and 6:

Table 5. Mean Value	lue	Table 6. Value of Deviation		
Class	Period		Working Period	
Proper	13,04	Propor	6,34	
Not Eligible	2,90	Not Eligible	4,98	

Testing data is data used for testing on mining data In this test data, the output or target results are predetermined The amount of data used is 59 data with 5 attributes Table 7 is an example of data that becomes testing data

 Table 7. Example of Data Testing (test)

Employee Name	NRP	Divided	Position	Working Time	Class	Result
FSB	0	CHCU	AST	1	Not Eligible	?

As explained in the data training process, the calculation of division and position attributes is different from the attributes of service period For the calculation process of testing data on division and position attributes, the results of training data are used, whilst for the calculation process of testing data for service period attributes using the Gaussian naive bayes formula (Hasanah et al, 2022) by taking mean values and standard deviations from the previous data training calculations. Calculating the likelihood of including an Unworthy class (C_0)

$$P(C_0) = \frac{10}{59} = 0,1695$$
 Class Not Worthy

Fraktal: Jurnal Matematika dan Pendidikan Matematika Volume 5, No. 2, November, Hal. 65-74 (e-ISSN 2776-0073) Talaba, Sudarsana, Al Fajri, Sistem Visualisasi....

$$P(Division = Chcu | C_0) \qquad P(Position = AST | C_0)$$
$$= \frac{1+0}{10+9} = \frac{1}{19} \qquad = \frac{1+3}{10+6} = \frac{4}{16}$$
$$= 0.053 \qquad = 0.25$$

To find the probability of the working period using the Gaussian formula.

$$P(X_i) = x_i | Y = y_j = \frac{1}{\sqrt{2\pi\sigma_{ij}}} e^{\frac{(x_k - \mu_{ik})^2}{2\sigma_{ij}^2}}$$

 $P (Working Time = 1|C_0) = \frac{1}{\sqrt{2(3,14)(4,98)}} e^{\frac{(7-2,90)^2}{2(4,98)^2}} = 0,166303662$

The next step is to calculate likelihood with the equation:

 $P(X | Credentials = C_0)$

$$= P(Division = Chcu|Credentials = C_0)$$

$$\times P(Position = AST |Credentials C_0) \times P(Working Time)$$

$$= 1|C_0) \times P(C_0)$$

$$= 0.053 \times 0.25 \times (1.66304E - 01) \times 0.1695 = 0.000370882$$

Calculating the likelihood of including an Eligible class (C_1)

$$P(C_1) = \frac{49}{59} = 0,8305 \text{ Decent Class}$$

$$P(\text{Division} = \text{Chcu} \mid C_1) \qquad P(\text{ Jabatan} = \text{AST} \mid C_1)$$

$$= \frac{1+7}{49+9} = \frac{8}{58} \qquad = \frac{1+10}{49+6} = \frac{11}{55}$$

$$= 0,138 \qquad = 0,2$$

To find the probability of the working period using the Gaussian formula

$$P(X_i) = x_i | Y = y_j = \frac{1}{\sqrt{2\pi\sigma_{ij}}} e^{\frac{(x_k - \mu_{ik})^2}{2\sigma_{ij}^2}}$$

$$P(Working Time = 1 | Proper) = \frac{1}{\sqrt{2(3,14)(6,34)}} e^{\frac{(7-13,04)^2}{2(6,34)^2}}$$

$$= 0.0261596442$$

The next step is to calculate likelihood with the equation:

 $P(X | Credentials = C_1)$

$$= P(Division = Chcu|Credentials = C_1)$$

$$\times P(position = Asspciate |Credentials C_1)$$

$$\times P(Working Time = 1|C_1) \times P(C_1)$$

$$= 0,138 \times 0,2 \times 0,026159642 \times 0,8305 = 0,00059933$$

From the results of the calculation of testing data (test) with the name FSB got a greater value for the Decent class $[(C]]_{-1}$ with a value of 000059933, it can be concluded that the employee named FSB is included in the Decent class category.

Database Design

In designing a database for a website portal system, several user data tables, personal data tables, and other tables are needed, namely:

- User Table Table Data Sertifikasi
- Atribut Table Table Data Uji
- Table Data Hitung Table Gausian
- Table Data Latih Table Hasil Hitung
- Table Data Peserta Table Hitung Uji

From the results of these tables, a web-based system will be built to test the feasibility of employees using the Naive Bayes method The results of these classifications and predictions will be displayed in visual form on the website Here is the Use Case of the built system.

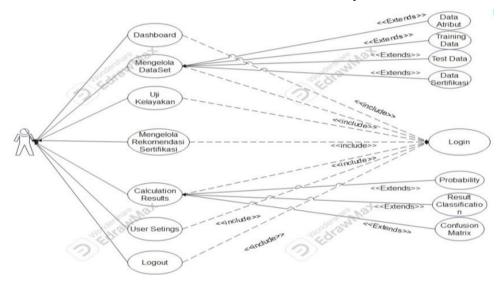


Figure 2. Use Case System

The training data that has been processed is then evaluated to determine whether the results are in line with expectations The following table 8 shows a comparison between the original data results and the results from the system.

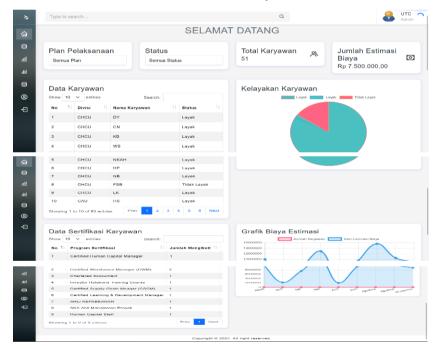

No	Name	NRP	Division	Position	Working Period	Class	Result	Description
1	DY	0	CHCU	AST	7	Proper	Proper	Eligible
2	CN	0	CHCU	AST	6	Proper	Proper	Eligible
3	KB	0	CHCU	AST	5	Proper	Proper	Eligible
4	WS	0	CHCU	AST	19	Proper	Proper	Eligible
5	NKAH	0	CHCU	AST	6	Proper	Proper	Eligible

Table 8. Original Data Results and Systems

Fraktal: Jurnal Matematika dan Pendidikan Matematika Volume 5, No. 2, November, Hal. 65-74 (e-ISSN 2776-0073) Talaba, Sudarsana, Al Fajri, Sistem Visualisasi....

No	Name	NRP	Division	Position	Working Period	Class	Result	Description
6	HP	0	CHCU	AST	13	Proper	Proper	Eligible
7	NB	0	CHCU	AST	14	Proper	Proper	Eligible
8	FSB	0	CHCU	AST	1	Proper	Proper	Not Eligible
÷	÷	÷	:	÷	÷	÷	:	÷
59	APO	0	CGS	SPS	14	Proper	Proper	Eligible

After the results of the original data test, an evaluation of the system test is carried out where this section will discuss the evaluation of the system testing that has been developed. Where from the results of the calculation and testing of the system, 49 decent class data were obtained that were predicted to be correct, 2 decent class data that were predicted to be unfeasible, 8 decent class data that were predicted to be not worthy of being predicted correctly, and 1 unworthy class data that was predicted to be feasible. With an accuracy value of 96%. The results of this study show that this prediction system is very accurate in predicting the feasibility of employee certification. The results of the calculation will be visualized in the website-based system that has been created.

The display above shows the main feature of the website, namely the dashboard. This dashboard feature displays a visualization of the results of employee due diligence using the naïve bayes method as well as overall employee certification data.

> Bayes A2	Type to	mentals -		٩		UTC
	Dataset	Data Sertifican				
	(G) (H)	golf Data B, Tambah Data	da Cetak I	Co Print Data Delete	Dete	
	_				_	
	DATA BEI	RTIFIKASI				
D Tranning Data	Show 1	ili 🛩 antrias			weight .	
D Test Data	No Ti	Instanti Penyelenggara	dente 1	Fragram	Pien Pelakusnaan	Extin
		ISACA	BNDP	Cartified Information Dystem Auditor (CIDA	a Marat	Hp. 8
	2	EA.	BNDP	Indonesia Internal Auditor Practitioner (IIA	P) Juni	Hp. 2
	3	RA.	ance	Certified Internal Auditor	Juni -	Hp. 7
d U) Kelayakan		IAI .	excer.	Membership Ikatari Akuntan Indonesia	Manut	Hp. 3
Retorendam		LAG .	BNDP	Chartered Accountant	Juni	Rp. 2
dil flavilitikani			Conversal	© 3034. All right reserved.		

Fraktal: Jurnal Matematika dan Pendidikan Matematika Volume 5, No. 2, November, Hal. 65-74 (e-ISSN 2776-0073) Talaba, Sudarsana, Al Fajri, Sistem Visualisasi....

	Data Atrib	ut 🗅 🔿	Manajemen Data	Atribut				
		-				_		
🔓 Dashboard	S Tamb	ah Arribut	🦪 Ambil dari T	raining Data	宜 Delete Date	a .		
	TABEL DATA	ATRIBUT						
🖨 Datasel 🗸 🗸	TABEL DATA	ATRIBUT						
Ø Data Atribut	Show 10	Intriva				Sea	ieh.	
Training Data	No	1 Tipe Atri	but .	Jenis Atrib	ut	Aksi		N
Test Data	1	DEVISI		CAU		ft Hapus 🥒	Edit	
Dete Sertifikesi						C realities	Eur	
	2	DEVISI		OFA		🕆 Hapus 🥒	Edit	
	а	DEVISI		035		🕆 Hapus 🥖	Edit	
<u>all</u> Prediction							Lon	
	4	DEMONST		CHOU		🕆 Hapus 🥖	Edit	
SULT				Copyrigh	t to 2024. All right cen	arved		
😼 Bayes A2 🛛 🕨	t Type to se	arch				Q	8	UTC
	Dataset	🙆 🗅 Test	Data					
G Dashboard	@ Impo	ort Data	🚯 Export Data	🖨 Print (Data 🕀 Delete	Data		
😫 Datasot 🔍	 Start 	Test						
	TRAIN DAT							
Training Data	inour bru	- INDEE						
	Show 10	~ entries				Sear	:h:	
	No T	NAMA	14 NRP	DIVISI	I JABATAN	MASA KERJA	14 KELAS	
	1	DY	80000000	CHCU	AST	7	Layak	
네 Uji Kelayakan	2	CN	80000000	CHCU	AST	6	Layak	
Rekomendasi	э	КВ	00000008	CHCU	AST	6	Layak	
ill Sertifikasi				Copyrigh	it © 2024. All right res	erved.		
👒 Bayes A2 🕨	• Type to se	arch				Q		UTC
							-	
	Dataset	🛆 👌 Trair	ning Data					
Dashboard	re Impo	ort Data	. Tambah Data	(a) Export	t Data 🛛 🖨 Print	Data 🗍 Delete Da	ta	
				_			-	
😫 Dataset	and Star	l Classifier						
🙂 Data Atribut								
Training Data	TRAIN DAT	A TABLE						
Test Data	and an					-		
— □ Data Sertifikasi	Show 10	 ✓ entries 	01		¢1	11 MADA KERJA	11 KELAS	
	No 1	MA	11 NRP 80000000	CHCU	11 JABATAN AST	11 MASA KERJA 22		
	1	51/3	80000000	CHCU	AbT		Layak	
	2	0.0	80000002	CHCU	AST	6	1 month	
uur vaLibasi <u>all</u> Uji Kelayakan	2	AA	80000000	CHCU	AST	6	Layak	

The displasy above is a dataset feature in the dataset feature there are attribute data features, training data, test data, certification data funds.

– Ş Bayes A2 i ⊷	Type to search	Q	Admin UTC	🎭 Bayes A2 🛛 ⊮	Type to search	Q	Admin C
HALAMAN LITAMA	Form Data SPrediction			HALLANSEN UTABLA	Rekomendasi Sertifikasi		
DATA MANAGER	🛓 Uji Kelayakan Karyawan			DATA MANAGER	Sertificas <u>d</u> Lihat Rekomendasi		
uli valibasi <u>eff</u> Uji Kelayakan	Nama			uu valibasi 렙 Uji Kelayakan	Data Sertifikasi Show 10 v entrine Search:	Tambah Peserta	
Hekomendes) Sertfikasi	NRP	0		All Sertifikasi	No 11 Nama Program 11 Devisi 11 1 Gentified Information System Auditor (GISA) CAU	Nama Karyawan Divisi NRP nomer NRP karyawan	۷]
RESULT	Devisi	v		Calculation Results <	2 Indonesia Internal Auditor Prastitioner (IIAP) CAU 3 Contribut Internal Auditor CAU	Jebeten Jebeten	
PROFILE	Converse E 5024 All cost of	100 Md		PROFILE	4 Membeodula Katan Akuntan Indonesia CPA Copyright @ 202	24. All right reserved.	

The display above is the feasibility test and certification recommendation feature in the dataset feature there are attribute data features, training data, test data, certification data funds.

Spayes A2 +←	Type to search		Q		Atmin	S Bayes A2 ↔	Type to	search			Q,		aria al an	
	Result Probability	Probability				HALAMAN UTANA	Result C	lassification	🔒 Result	Classification				
🔓 Uashboard		Desitioard RESULT CLASSIFICATION to TOTAL TEST DATA												
	Probabilitas Atribu													
	Tipe Data	Tipe Atribut	Layak Tidak Layak (C Recuil) Gaussian al Protection						ian – all Probabi	bilty Class - P Confusion Matrix				
Defeset <	Kelas	P_Kelas	0.8305	0.1895		G basisti (Corry	Copy Extel PDF Print Search:						
	Divisi	CHOU	0.138	0.053		8.1%400431	No	Nama	Devini	1 Jabatan	Masa Kerja	Keles	Havit 1	
d Uji Kelayakan	Divisi	CAU	0.089	0.053		네 Uji Kelayakan	No	DY	CHOU	AST	- Masa Kerja	Layek	Layak	
. Rekomendael	Divisi	OFA	0 172	0.053		Rekomendasi	2	CN	CHCU	AST		Layak	Layak	
Sertifikasi	Divisi	NECT	0.103	0.053		III Scriifitasi	2	KB	CHOU	AST	5	Layak	Layak	
	Divisi	PRT	0.034	0.105		RESULT	4	ws	CHCU	AST	18	Layak	Layak	
	Divisi	тмо	0.052	0.050		E Calculation Results 🕤		NKAH	CHCU	AST	8	Layek	Layak	
Calculation Results 🗸	Divisi	DAD	0.086	E. 158		- Probability		HP	CHCU	AST	13	Loyak	Lagak	
 Probability 		and Constants (1)	024, All right reserved.			The control of the sector of the					24. All right reserved.			

The above display is the display of the probability and Result Classification features located on the calculation results page. This feature will Display the probability of the attributes we entered and the results of the classification that we have done using the Naive Bayes method.

		Type to search			Q			2	UTC Admin			
窗	Confusion Matrix a Confusion Matrix											
8												
ш												
alıl	Performance Vector					Confusion Matrix						
8		#	Variable	Value								
0		1	Accuracy	55 W		Total Test = 60	Prediksi →					
÷Ð		2	Precission	98.02 %		Aktual ↓	Layak	Tidak Layak				
-		3 Rec	Recall	98 %		Layak	49	2				
		4	F-Rate	<i>a</i> 2		Tidak Layak	1	8				
		5	F1-Score	97.03								
				Copyright © 202	24. All right re	served.						

The display above is the display of the Confusion Matrix feature located on the calculation results page. In this feature, the accuracy level of the calculation results that we have done using the naïve bayes method and also the amount of data whose prediction results are correct and incorrect. Where the accuracy level obtained is 96%.

CONCLUTION

Based on the results of the research that has been conducted, it can be concluded that this study shows that a web-based employee certification data visualization system using the naïve bayes method can provide accurate prediction results and help companies manage the employee certification process more efficiently. This system can be integrated with a human resource management system (HRMS) to provide automatic and real-time prediction of certification eligibility.

REFERENCES

- Hasanah, Q., Oktavianto, H., & Rahayu, Y. D. (2022). Analisis Algoritma Gaussian Naive Bayes Terhadap Klasifikasi Data Pasien Penderita Gagal Jantung Gaussian Naive Bayes Algorithm Analysis Of Data Classification Of Heart Failure Patiens. Journal of Smart Technology, 3(4), 2774–1702. http://jurnal.unmuhjember.ac.id/index.php/JST
- Pahlevi, R., Negara, E. S., Sutabri, T., & Herdiansyah, M. I. (2023). Application of the Naive Bayes Method to Determine the Classification of Eligibility for Receiving Rehabilitation and School Construction Assistance at the Banyuasin Regency Education and Culture Office. Journal of Information and Computer Technology, 9(2), 1176–1188. https://doi.org/10.37012/jtik.v9i2.1790

Tractors, U. (2024). United Tractors. https://www.unitedtractors.com/