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ABSTRACTS  
The present study considered the amount of thiophene_alkane separation within the process of pervaporation by use of-of membrane 

polyethylene glycol and polydimethylsiloxane-polyacrylonitrile with the help of Artificial Neural Network Modeling. In this research, the 

effects of such parameters as Volumetric flow rate and temperature, as well as feedstuff properties (separation factor and flux) on the 

Desulfurization process efficiency were evaluated, and the Multi Layers Perceptron (MLP) neural network feed forward along with Propagation 

learning algorithm and Levenberg-Marquardt function with inputs and outputs were implemented. Tansig activation algorithm was used for the 

hidden layer, and Purelin algorithm was utilized for the output layer. Furthermore, 5 neurons were defined for the hidden layer. After processing 

the data, 70 percent were allocated for learning, 15% were allocated for validity, and the remaining 15% was allocated for the experience. The 

achieved results with the aforementioned method had a suitable accuracy. The graphs of the error percentage for the actual values of the 

separation factor and flux outputs were compared to the achieved values from modeling through related membranes for evaluating the efficiency 

of pervaporation process in a separation of ethanol, Acetone, and butanol from the water. Finally, the graphs were drawn.  
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1. Introduction 

Sulfur-containing compounds are one of the most 

important pollutants in petroleum products, and removing 

them is considered as a goal in the refinement process. The 

desulfurization process emerged in 1933, and so far, a great 

number of researchers have been conducted on this subject. 

Environmental regulations for sulfur content in fossil fuels are 

getting more and more rigid, and international regulation-

making organizations have defined the permissible amount of 

sulfur content in petroleum products to be 15 ppm in order to 

limit and lower the amount of this dangerous substance. 

However, the amount of sulfur content in the petroleum 

products produced in Iranian refineries is about 500-1000 ppm, 

and this amount of sulfur content can seriously pollute the air 

and environment (Abdullah et al., 2014).    

As the reduction of sulfur content in the fuel is 

influential over the Diesel engine performance, automobile-

makers are obliged to design and manufacture automobiles that 

are compatible with low-sulfur fuels (Al-Shahrani et al., 2007). 

Moreover, the existence of poisoning expensive metal catalysts 

used in the refineries, and deactivation of this substance while 

getting in contact with these harmful compounds is another 

reason of necessity for fuel desulfurization. Regarding the 

rigid regulations on fuel desulfurization (Li et al., 2014), the 

researchers are trying to find solutions for desulfurization of 

fuels in the recent years. One of the fuel desulfurization 

methods that have attracted the attention of the researchers in 

the recent years is desulfurization by use of membrane 

processes. In this technology, a semi-permeable membrane is 

used for separation of different compounds. This method is 

much more economical than other common methods of 

desulfurization regarding the costs, consumed energy, and 

required equipment (Bösmann et al., 2001). The pervaporation 

process is a notable progress in the field of solvent 

desulfurization, desulfurization of volatile organic compounds, 

water partial desulfurization, and recently, desulfurization of 

organic- organic solutions. Furthermore, it is approved that 

such method has a good efficiency in a separation of sulfur 

impurities. Due to high overall efficiency and high energy 

efficiency, this method is getting more popularity in the 

industries right now. Selection of the proper membrane is one 

of the most important phases in the evaporation process. In 

most of the evaporation processes, the driving force is the 

pressure difference between the feed current and the permeated 

current, and, the vacuum pump provides the required driving 

force for mass transfer of the compounds (Mulder, 1996).           
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In this study, a membrane procedure will be simulated 

in Artificial Neural Network (ANN). The produced feed from 

Sulfur and hydrocarbon compounds undergo the procedure and 

will be analyzed under different conditions regarding 

temperature and pressure in separation efficiency. Moreover, 

other influential parameters on the evaporation process will be 

defined (Huang et al., 2004; Yazu et al., 2004; Dooley et al., 

2013; Wang et al., 2014; Fattahi et al., 2014). 

2. Materials and Methods 

2.1. Artificial Neural Network (ANN) 

The ANN system is inspired by the brain and neural 

system of human beings and is composed of a great number of 

neurons. Like the human brain, the ANN networks are capable 

of training. One of the advantages of ANN networks is that in 

problems where an algorithm (in the form of a formula) is not 

found, or there are a number of examples of the inputs and 

outputs of the desired system available, usage of ANN for 

proposition of a model or giving structure to the information 

will be useful (Mohaghegh, 2000).   

High calculation speed of the computers and faster 

training algorithms can make the ANN more popular in future. 

This issue can make usage of ANN possible in industrial 

problems that have a great volume of calculations. Regarding 

the fact that ANN is not comparable with the natural neural 

networks, they (ANN) have some characteristics that make 

them unique where training a linear or nonlinear mapping is 

required (for example in the field of image resolution, robotics, 

and control)  (Maier and Dandy, 2001; Goda et al., 2005; 

Shoikir et al., 2006). 

2.2. The structure of ANN 

Regarding the fact in many cases, a neuron with a great 

number of inputs is not enough for resolving a technical- 

engineering problem, gathering a number of neurons in a layer 

are required in some cases. Moreover, a compilation of 

neurons in different layers is possible for increasing the system 

efficiency. In this case, the network will be designed with a 

particular number of inputs and outputs, with a difference that 

the network will have more than one layer. Under this 

condition, the layer to which the data enters is called input 

layer, the layer from which the processed data gets out is 

called the output layer, and other layers are called hidden 

layers. Figure 1 displays an ANN with three layers. In this 

network, the input, hidden, and output layers are composed of 

only one layer. The network capabilities can be modified by 

altering the number of hidden layers, and the number of 

neurons in each layer. The artificial neural cell is, in fact, a 

mathematical equation in which  denotes an input signal that 

after strengthening or weakening as much as  parameter (in 

mathematical terminology, it is called weight parameter), it 

will enter the neuron as an electric signal with a size of . In 

order to simplify the mathematical model, it is assumed that 

input signal is added to another signal with the  value within 

the neural cell nucleus. Before getting out of the cell, the result 

(i.e. a signal with a value of  ) undergoes another process 

that is called transfer function in the technical terminology.       

When a huge ANN is formed due to gathering a great 

number of neural cells, too many of the  and  parameters 

must be initialized by the network designer. This process is 

called training process. Sometimes, compiling a number of 

neurons in a layer is required. Moreover, compiling neurons in 

different layers is also possible for improving the system 

efficiency. In this case, the network will be designed with a 

particular number of inputs and outputs, with a difference that 

the network will have more than one layer. The network 

capabilities can be modified by altering the number of hidden 

layers, and the number of neurons in each layer (Rautenbach 

and Albrecht, 1985). 

 
Fig. 1. A schematic of ANN and its layers 

3. Results and Discussion 

The network inputs include volumetric flow rate and 

temperature. The network outputs include separation factor 

and flux. A separate ANN was designed for the separation 

factor and flux parameters. The MATLAB software version 

R2012a (7.14.0.739), propagation training algorithm for neural 

network modeling, and Levenberg-Marquardt function for 

neural network modeling was used. The neurons in the input 

layer of the network were defined to be 5 neurons. The results 

can be seen in figures (Fig. 2 to Fig. 11) below.   

 
Fig. 2. The performance of Alcan-Thiophene desulfurization by 

polydimethylsiloxane-polyacrylonitrile membrane 

The outputs for flux in Thiophene desulfurization by 

use of a polydimethylsiloxane-polyacrylonitrile membrane 

with 141 numbers of outputs are as follows (Lin et al., 2006). 
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There is a system performance graph in the ANN that shows 

the number of steps in terms of error. As shown in Figure 2, 

the error performance of the network for train, test, and 

validation is descending. Phase 34 that is marked with a circle 

shows the best validation performance. It means that system 

had a lower error around the circle, and the excessive training 

initiated afterward. 

After the required data were defined and trained to the 

ANN, other results were achieved in the regression section. In 

the figure below, the target axis depicts the goal parameter 

outputs (in fact, the thing to be achieved at the end). The 

vertical axis depicts the output achieved by the ANN. These 

two graphs are usually drawn according to each other, and if 

the ANN would be able to conduct an exact modeling, the 

graph will be drawn on a line with  coordination (a line 

with the slope 1 that passes the origin of the coordinates). In 

order to statistically calculate the best line with the lowest 

error, the linear equation in the total graph should be used.   

            (1) 

 
Fig.3. Regression graph for desulfurization of Alcan-Thiophene de-

sulfurization by polydimethylsiloxane-polyacrylonitrile membrane 

The 3D graph of Thiophene desulfurization can be 

analyzed as follows (Fig. 4). As the temperature increases, the 

flux increases along the membrane and the temperature has a 

direct effect on the transfer of the components into the feed 

and membrane. 

 
Fig.4.The flux graph for desulfurization  of Alcan-Thiophene de-

sulfurization by polydimethylsiloxane-polyacrylonitrile membrane 

The figure below displays a comparison of the error 

percentage for real output and the modeled output. As 

observed in Fig. 5. The temperature affects the transfer of 

compounds in the liquid feed and in the membrane, and 

increasing the concentration decreases the slope of the flux.  

 
Fig. 5. Comparison of the error percentage for real output and the 

modeled output in desulfurization of Alcan-Thiophene by 

polydimethylsiloxane-polyacrylonitrile membrane 

For desulfurization of Thiophene by use of a poly-

dimethylsiloxane-polyacrylonitrile membrane, the output 

results of separation factor with 141 outputs are as follows 

(Lin et al., 2006). In the figure below, the best validation 

performance was achieved in the Sixty one repetitions, and 

excessive training initiated afterward.    

 
Fig. 6. The performance graph for desulfurization of Alcan- 

Thiophene by polydimethylsiloxane-polyacrylonitrile membrane 

The regression graph is depicted in the figure below. As 

observed in the total graph, the best line with the lowest error 

is achieved by the equation 2. 

 ( 

 
Fig. 7. Regression graph for separation factor in desulfurization of 

Alcan-Thiophene by polydimethylsiloxane-polyacrylonitrile 

membrane 
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 As analysis of the 3D graph below, it can be mentioned 

about the separation factor that at the beginning, separation 

factor decreases with the increase of temperature. 

 
Fig. 8. Separation factor 3D graph for desulfurization of Alcan- 

Thiophene by polydimethylsiloxane-polyacrylonitrile membrane 

The graph for calculation of error percentage of the real output 

and the modeled output is depicted in the figure below. As 

observed in the Fig. 9, in desulfurization of Thiophene, flux 

with increasing temperature and concentration the separation 

factor first increases and then decreases.  

 
Fig. 9. Comparison of error percentage for overall flux in reality and 

modeling for desulfurization of Alcan-Thiophene by 

polydimethylsiloxane-polyacrylonitrile membrane 

106 data were used for desulfurization of Alcan- 

Thiophene by polydimethylsiloxane-polyacrylonitrile mem-

brane was utilized. The results for separation factor are as 

below (Qi et al., 2007; Lin et al., 2007; Srikanth, 2008). The 

best validation performance in performance graph was in the 

Sixteenth repetition. The regression coefficient for all the data 

in regression graph was equal to 0.99919 that was a very good 

result. The graph for calculating the error percentage of the 

real output value and the modeling output value is displayed 

below. As reflected in this graph, as time went down and the 

volumetric flow decreased, sulfur decreased to a constant 

value.  

 
Fig. 10. Comparison of the error percentage for real separation 

factor and modeling in desulfurization of Alcan-Thiophene by 

polydimethylsiloxane-polyacrylonitrile membrane 

 The results of overall flux output in desulfurization of 

Alcan-Thiophene by polydimethylsiloxane-polyacrylonitrile 

membrane are as follows: The best validation performance in 

the performance graph was in the Sixteenth repetition. The 

regression coefficient for all data in the regression graph was 

calculated to be 0.99986 that is a very good result. The graph 

for calculation of the error percentage for real flux and 

modeling is as follows. It can be seen that with an increase of 

volumetric flow rate in desulfurization of Alcan-Thiophene, 

the overall flux increases.  

 
Fig. 11. Comparison of error percentage for overall flux in reality 

and in modeling of desulfurization of Alcan-Thiophene by 

polydimethylsiloxane-polyacrylonitrile membrane 

4. Conclusion  

The maximum amount of flux modeled by ANN and 

the real amount of flux were compared in this study. The 

amount of error percentage in ANN was 0.34, which was 

acceptable. Consequently, it can be concluded that the results 

of modeling method were acceptable. Desulfurization of 

organic compounds by means of evaporation was modeled in 

ANN. It was concluded that Polyether polydimethylsiloxane-

polyacrylonitrile membrane is suitable for desulfurization of 

organic compounds. Moreover, the ANN could reflect the 

error very well. 
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