

J-Icon : Jurnal Informatika dan Komputer 174
Vol. 11 No. 2, Oktober 2023, pp. 174-184

DOI: 10.35508/jicon.v11i2.12443

*Corresponding Author

Submitted : 23 Agustus 2023

Accepted : 14 September 2023

Online Published : 31 Oktopber 2023

ISSN: 2337-7631 (Printed)

ISSN: 2654-4091 (Online)

IMPLEMENTATION OF MODEL BASED TESTING FOR TESTING KAWN

SUBSCRIPTIONS MANAGER APPLICATION

Arnaldo Marulitua Sinaga1, Mikhael Hutapea2*

1,2Program Studi Sarjana Terapan Teknologi Rekayasa Perangkat Lunak, Institut Teknologi Del,

Jl. Sisingamangaraja Laguboti
1Email: aldo@del.ac.id

2Email*: mhutapea751@gmail.com

ABSTRAK
Penelitian ini berfokus pada aplikasi Kawn Subscriptions Manager, yang dikembangkan untuk

membantu pelaku bisnis Food and Beverage (F&B) mengelola langganan pelanggan. Saat ini, aplikasi

Kawn Subscriptions Manager belum memiliki rangkaian pengujian standar yang telah divalidasi. Untuk itu

pada penelitian ini, Model-Based Testing (MBT) diterapkan dalam pengujian aplikasi Kawn Subscriptions

Manager sebagai metode pengujian untuk menghasilkan rangkaian pengujian yang spesifik dan teknis.

MBT adalah metode pengujian berdasarkan behavioural model dari sistem yang sedang diuji. Kemudian

untuk mengukur adequacy kasus uji yang dihasilkan oleh MBT digunakan mutation testing. Model dibuat

menggunakan tool GraphWalker dan pengujian dilakukan secara otomatis dengan menggunakan Selenium

dan testNG pada text editor Eclipse IDE. Dari hasil penelitian diketahui bahwa pengujian MBT

menghasilkan 73 kasus uji dari model perilaku fungsi yang diuji. Pengujian dengan MBT menunjukkan

bahwa tidak ditemukan kegagalan pada fungsi yang diuji. Kemudian diperoleh rata-rata mutation score

sebesar 72,18% yang menunjukkan bahwa test case yang dihasilkan oleh MBT cukup adequate atau berada

pada kategori medium. Namun, penting untuk dicatat bahwa meskipun MBT berhasil dalam menghasilkan

kasus uji yang memeriksa perilaku aplikasi, ditemukan bahwa metode ini ternyata tidak mampu mendeteksi

kegagalan yang disebabkan oleh mutan yang tidak mempengaruhi perilaku aplikasi secara signifikan.

Penemuan ini menunjukkan bahwa MBT dapat menjadi alat yang efektif untuk menguji fungsi-fungsi

utama, tetapi tetap dibutuhkan metode tambahan untuk mengidentifikasi kegagalan yang mungkin terjadi

akibat perubahan kecil atau tidak signifikan pada kode aplikasi.

Kata kunci: Model Based Testing, Mutation Testing, GraphWalker, Behavioural Model, Adequacy.

ABSTRACT
This research focuses on the Kawn Subscriptions Manager app, which was developed to help Food

and Beverage (F&B) businesses manage customer subscriptions. Currently, the Kawn Subscriptions

Manager application does not have a standardized test suite that has been validated. Therefore, in this

research, Model-Based Testing (MBT) is applied in testing the Kawn Subscriptions Manager application

as a testing method to produce a specific and technical test suite. MBT is a testing method based on the

behavioral model of the system being tested. Then, to measure the adequacy of test cases generated by

MBT, mutation testing is used. The model is created using the GraphWalker tool and testing is done

automatically using Selenium and testNG in the Eclipse IDE text editor. From the results of the study, it is

known that MBT testing generates test cases from the behavior model of the function being tested. Testing

with MBT shows that no failures were found in the tested functions. Then the average mutation score is

72.18% which indicates that the test cases generated by MBT are adequate or in the medium category.

However, it is important to note that while MBT was successful in generating test cases that examined the

application's behavior, it was found that the method was unable to detect failures caused by mutants that

did not significantly affect the application's behavior. This finding suggests that while MBT can be an

effective tool for testing key functions, additional methods are needed to identify failures that may result

from minor or insignificant changes to the application code.

Keywords: Model Based Testing, Mutation Testing, GraphWalker, Behavioural Model, Adequacy.

1. INTRODUCTION
Model based testing (MBT) is an automation of black box test design, where test cases will be

generated automatically from the behavioural model of the system under test (SUT) so that it will speed up

the testing process [1]. The main advantage of using MBT is that the time required to model system

behaviour is faster than writing and executing test cases manually. MBT also has a wider range of test cases

https://doi.org/10.35508/jicon.v11i2.12443
mailto:aldo@del.ac.id
mailto:mhutapea751@gmail.com

J-Icon : Jurnal Informatika dan Komputer 175
Vol. 11 No. 2, Oktober 2023, pp. 174-184
DOI: 10.35508/jicon.v11i2.12443

ISSN:2337-7631 (Printed)

ISSN: 2654-4091 (Online)

that are not possible to create manually [2]. MBT is also more time-efficient, so it costs less when compared

to test case-based testing [3].

With several advantages that MBT has, this method will be applied to the testing of Kawn

Subscriptions Manager application. Kawn Subscriptions Manager is a web-based system developed to

manage the subscription packages of F&B businesses at Kawn. Previously, the Kawn Subscriptions

Manager application did not have a validated standard test suite. For this reason, a method that produces a

good standard test suite and is validated based on the adequacy of the test items is needed. The model

generated by MBT will help understand the system under test (SUT) more easily and can be reused so that

when the system has new features, the tester can gradually add these features to the model [4]. This will

help test the Kawn Subscriptions Manager application when there are additional changes or features occur

in the application.

Then the fault-based testing method with a mutation testing approach is used to measure the

adequacy level of the test suite produced by MBT. The adequacy criterion is a measure that assesses the

ability of the test suite to detect errors in the SUT [5]. The use of this mutation testing approach aims to

evaluate the ability of the test suite generated by MBT to detect faults contained in the Kawn Subscriptions

Manager. The purpose of this research is to create a series of automatic tests made from models with MBT

techniques in the Kawn Subscription Manager application and calculate the adequacy level of the test suite

generated by MBT using the mutation testing method.

The second part of this article contains a review of various literature that has been collected and the

methods used by researcher to conduct the research. The third section describes the implementation and

experiments conducted and also a discussion of the research results. The fourth section contains conclusions

about the research that has been done and suggestions needed for improvement in future research.

2. MATERIAL AND METHODS
In this section, a summary of previous research that has been done and related to MBT,

GraphWalker, mutation testing, and Kawn Subscriptions Manager is explained. Also in this section, we

will explain the methodology that will be used in this research along with the research design that will be

carried out.

Model Based Testing

Model-based testing is a testing method that relies on a model of the system being tested and/or its

environment to obtain test cases where the model describes the behaviour of the system and also the possible

behaviour of the system's environment [6]. The model of a system is obtained from the requirements and

behaviour of the system under test (SUT) [2]. Models of a SUT can be in the form of UML diagrams and

finite state machines [7].

GraphWalker

GraphWalker is an open source MBT tool for generating models in the form of graphs [8]. The graph

in GraphWalker is a finite state machine and from the resulting graph, test cases will be generated

automatically [9]. The resulting graph is a model that represents the behaviour of the SUT.

Mutation Testing

Mutation testing is a testing technique that modifies the program by inserting faults into the program

to create new versions of the program called mutants [10]. The original program modification process is

done by changing the syntax in the program with the mutation operator. Mutation operators used in

mutation testing can be customized according to the programming language of the system to be tested [11].

Kawn Subscriptions Manager is an application built using the Python programming language, so the types

of mutation operators used are mutation operators for Python programs. Some mutation operators that can

be implemented in Python programs include [12]:

1. AOD - Arithmetic Operator Deletion

2. AOR - Arithmetic Operator Replacement

3. ASR - Assignment Operator Replacement

4. COD - Conditional Operator Deletion

5. COI - Conditional Operator Insertion

6. CRP - Constant Replacement

7. ROR - Relational Operator Replacement

8. IOD - Overriding Method Deletion

9. IOP - Overridden Method Calling Position Change

10. SCD - Super Calling Deletion

https://doi.org/10.35508/jicon.v11i2.12443

J-Icon : Jurnal Informatika dan Komputer 176
Vol. 11 No. 2, Oktober 2023, pp. 174-184
DOI: 10.35508/jicon.v11i2.12443

ISSN:2337-7631 (Printed)

ISSN: 2654-4091 (Online)

11. SCI - Super Calling Insertion

12. DDL - Decorator Deletion

To measure the level of adequacy in mutation testing, we can use mutation score. Mutation score is

a comparison between kill mutant and non-equivalent mutant [13]. Mutation score can be calculated using

the Equation 1.

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 = 100 ∗
𝐷

(𝑁−𝐸)
 (1)

With D stands for death mutant, N stands for total mutant, and E stands for equivalent mutant. Also, to

calculate the average mutation score from all tested functions can be done using Equation 2.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑢𝑡𝑎𝑛𝑡𝑠
 (2)

Kawn Subscriptions Manager

Kawn Subscriptions Manager is a system developed to manage the subscription status of F&B

businesses in Kawn. Kawn itself is an online cashier application designed to be a companion for F&B

businesses in inventory, pricing, transactions, and business bookkeeping activities. Kawn Subscriptions

Manager helps manage the subscription process of F&B businesses that subscribe to the Kawn application.

Figure 1 shows the login page of the Kawn Subscriptions Manager application.

Figure 1. Kawn Subscriptions Manager

The modules in Kawn Subscriptions Manager include:

1. Client: Client module consists of clients and outlets. In the client mode, there is a client update

feature and in outlet mode, there are add, update, and delete outlet features.

2. User: In user module there are add, update, delete users, email confirmation, profile

management, and password reset features.

3. Subscription: The subscription module consists of two parts namely subscription plan and

subscription. In subscription plan there are add, edit, delete, activate, and deactivate features,

while in subscription, there are add, deactivate, and activate features for extending the

subscription period.

In this research, the functions that will be tested are the authentication and the functions of adding

data. The data addition function itself consists of the function of adding user, adding outlet, adding

subscription plan, and adding subscription. The reason for choosing these functions is that all five functions

have fields that can be filled in by the user and each field has a number of input requirements. In addition,

these functions are easier to modify because the program code contains operands, constants, methods, and

statements.

The business process of the authentication function of the Kawn Subscriptions Manager application

that will be tested can be seen in Figure 2.

Figure 2. Authentication Business Process

https://doi.org/10.35508/jicon.v11i2.12443

J-Icon : Jurnal Informatika dan Komputer 177
Vol. 11 No. 2, Oktober 2023, pp. 174-184
DOI: 10.35508/jicon.v11i2.12443

ISSN:2337-7631 (Printed)

ISSN: 2654-4091 (Online)

The authentication business process starts with the user entering the application Uniform Resource

Locator (URL) into the browser. Then the system will display a login page containing a form that can be

filled in by the user. If the user fills in the form with the correct input and is registered in the system, then

the user will be directed to the client page. However, if the user fills out the form with the wrong input or

is not in the system or does not fill out the form, the user will be directed back to the login page. Then users

who want to exit the application can select the logout menu. Then the system will display the logout page

and the user can press the logout button. The system will stop all user access to the application and the user

will be directed back to the login page.

As for the business process of the create data function which consists of creating users, outlets,

subscription plans and subscriptions can be seen in Figure 3.

Figure 3. Create Data Business Process

The create user, outlet, subscription plan and subscription functions have the same business process

flow, so they are described in one create data business process. The create data business process starts when

the user selects the add data menu. Then the system will display the add data form page that can be filled

in by the user. After the user fills in the form and presses the save button, the system will check the input

data. If the data filled in is in accordance with the specified format, the data will be stored in the database.

Then the system will display a success alert on the data list page. However, if the data filled in by the user

does not match the specified format, the user will be directed back to the add data form.

Research Methodology

The methodology used in conducting this research is experimental methodology. Experimental

methodology is a method that involves a deep understanding of how to carefully design and run

experiments, take into account various variables that might affect the results, and ensure that the data

obtained is reliable [14]. In this study, the experimental methodology was carried out in several stages. The

research design can be seen in Figure 4.

Figure 4. Research Design

The first stage of this research is data collection, which is a crucial step in understanding the Kawn

Subscriptions Manager app thoroughly. Data collection aims to obtain relevant and in-depth information

related to the application. The data collection process is done through various methods that involve

extracting literature sources and documentation related to the application being tested. This includes

searching, understanding, and analyzing various documents, guides, technical specifications, and other

resources related to Kawn Subscriptions Manager. The results obtained from data collection will be used

for the behavioural model design stage of the Kawn Subscriptions Manager.

The second stage is to develop a test plan. The test plan will clearly reveal the test objectives,

strategies and approaches, test procedures, test environment, test completion criteria, components to be

tested and personnel. The third stage is done by applying model-based testing (MBT) to test the application.

The stages carried out in MBT include understanding the system under test (SUT), test selection criteria,

https://doi.org/10.35508/jicon.v11i2.12443

J-Icon : Jurnal Informatika dan Komputer 178
Vol. 11 No. 2, Oktober 2023, pp. 174-184
DOI: 10.35508/jicon.v11i2.12443

ISSN:2337-7631 (Printed)

ISSN: 2654-4091 (Online)

test case generation and test execution. The fourth stage is the application of mutation testing to measure

the adequacy level of the test cases generated by the MBT method. The stages in mutation testing are

generating mutant programs and mutation testing. The last stage is writing a test report. The test report

contains testing activities that have been carried out, test results, and conclusions.

An explanation of the implementation of MBT and MT in this study will be explained in this section.

The details of the testing stages with model-based testing can be seen in Figure 5.

Figure 5. Stages of Model-Based Testing

The first stage in MBT is understanding the system under test (SUT). This stage is done by analyzing

the Kawn Subscriptions Manager application. The analysis is done by referring to the Kawn Subscriptions

Manager technical document. The expected results at the analysis stage are an overview of the application,

an overview of business processes, specifications and identification of functions. Then the behavioural

model design is based on the understanding and analysis of the SUT.

The second stage is testing selection criteria. At this stage, a behavioural model is made with the

GraphWalker MBT tool. Behavioural models are made in finite state machine format. Behavioural models

are made based on the flow of business processes of each function. The third stage is done by generating

test cases. Test cases are generated automatically according to the behavioural model that has been made

in the previous stage. This process is automated by creating an interface model and applying it to a test

script in the Eclipse IDE. The fourth stage is the stage carried out by executing the test case on the test

object. The test execution process is done automatically with Eclipse IDE. As for the details of the testing

stages with mutation testing can be seen in Figure 6.

Figure 6. Stages of Mutation Testing

The first stage in mutation testing is generating mutant programs. At this stage, the process of

creating a mutant program is carried out. Mutant programs are generated by modifying the function program

code that has been tested in the previous stage. The program code is modified using the mutation operator.

Mutant programs generated by each function will differ according to the number of mutation operators that

can be applied to the program code. Mutation operators that will be applied to the original program

modification process are mutation operators for python language programs. The program code modification

will be done manually.

The second stage is mutation testing. This stage is done by testing test cases against the mutant

program that has been created. The test cases tested are the same test cases used to test the original program.

At this stage, the mutation score calculation process is carried out to determine the level of test suite

adequacy produced by model-based testing.

3. RESULTS AND DISCUSSION
This section contains an explanation of the implementation process of applying MBT to Kawn

Subscriptions Manager application testing and experiments with mutation testing.

Test Object Behavioural Model

Before the behavioural model is created, the analysis and design of the function is first carried out.

For example, in the authentication function, from the analysis, it is found that the authentication function

consists of login and logout functions. In the login function, there are two inputs, namely username/email

and password. Users who want to access the system must go through the authentication process. If the user

provides correct input on the login form, the user will be directed to the client page, but if the user does not

provide input or is wrong, the user will remain on the login page. For the logout process, the user will exit

the system to the login page. Based on this analysis, the design of the behavioural model of the

authentication function can be seen in Table 1.

Table 1. Authentication Behavioural Model Design

Transitions From State To State

OpenLoginPage - LoginPage

InputCorrectCredentials LoginPage ClientPage

https://doi.org/10.35508/jicon.v11i2.12443

J-Icon : Jurnal Informatika dan Komputer 179
Vol. 11 No. 2, Oktober 2023, pp. 174-184
DOI: 10.35508/jicon.v11i2.12443

ISSN:2337-7631 (Printed)

ISSN: 2654-4091 (Online)

Transitions From State To State

InputIncorrectCredentials LoginPage LoginPage

InputEmptyCredentials LoginPage LoginPage

OpenLogoutPage ClientPage LogoutPage

Logout LogoutPage LoginPage

Based on the results of the analysis of the behaviour of the test object through the business process,

a behavioural model of the test object is generated. The process of creating a behavioural model of the

object to be tested is done using GraphWalker studio. The model is stored in json form and used to generate

test cases. In this research, five behavioural models were produced according to the number of functions

tested. Figure 7 is a behavioural model for the authentication function.

Figure 7. Authentication Behavioural Model

From the behavioural model of the authentication function above, there are three vertices and six

edges. Details of the vertices and edges of the behavioural model of the authentication function can be seen

in Table 2.

Table 2. Authentication Behavioral Model

Edge/Vertex Description

v_LoginPage A state indicating that the login page has been successfully opened

and the SUT displays the login page.

v_ClientPage A state indicating that the user has successfully logged into the

application and the application displays the client page.

v_LogoutPage A state indicating that the user is on the logout page.

e_OpenLoginPage Action to start the browser and display the login page. This element

is the start element.

e_InputCorrectCredentials Action to enter a value into the login form where the value entered is

a valid or correct value.

e_OpenLogoutPage Action to press the logout button.

e_Logout An action that indicates the process of exiting the application.

e_InputIncorrectCredentials Action to enter a value into the login form where the value entered is

an invalid or wrong value.

e_InputEmptyCredentials Action to enter a blank value into the login form.

v_LoginPage A state indicating that the login page has been successfully opened

and the SUT displays the login page.

In testing the Kawn Subscriptions Manager application, five behavioural models were generated

according to the number of functions tested. In the behavioural model for the create user, outlet, subscription

plan and subscription functions, there are seven vertices and nine edges each.

Model Interface Generation

In this stage, the model interface generation is done from the behavioural model that has been

created. The generated interface provides a method that can be called by the class where the test script is

created to retrieve information about the model and how the model should run. The interface model

generated is five interfaces according to the number of models created. Each edge and vertex in the

behavioural model will become a method in the interface and can be called in the class that implements the

interface.

Testing Implementation

https://doi.org/10.35508/jicon.v11i2.12443

J-Icon : Jurnal Informatika dan Komputer 180
Vol. 11 No. 2, Oktober 2023, pp. 174-184
DOI: 10.35508/jicon.v11i2.12443

ISSN:2337-7631 (Printed)

ISSN: 2654-4091 (Online)

Before the test is executed, a test script is first created by implementing the method on the interface.

Testing is done by executing all the methods in the test script. Testing is said to be successful if all methods

in the test script are executed at least once. This means that all edges and vertices in the model must be

passed. In other words, all functions in the software have been tested and there are no errors or weaknesses

in the developed system. After testing the original program, it will be continued with the implementation

of mutation testing.

Mutant Program Creation

Mutant programs are generated using the mutation operator. The mutation operator for each function

can be based on the program code complexity of each function. This will make the type of mutant program

and the number of mutant programs for each function different. The type of mutation operator used in each

function can be seen in Table 3.

Table 3. Authentication Mutant Program

Function Description Mutation Operator

Authentication In the authentication function code,

there are conditional operator, and

relational operator and a constant.

COD, ROR, CRP.

Create User The create user code contains a

decorator, assignment operator,

overriding method, and constants.

ASR, DDL, IOD,

CRP.

Create Outlet In the code of the create outlet

function, there are three operators,

namely arithmetic, conditional and

relational and one constant. Then

there are method calls (overriding

method) and super method.

ROR, IOD, SCD,

IOP, CRP, COD,

AOD.

Create Subscription Plan The create subscription plan code

contains a decorator, arithmetic

operator, relational operator,

overriding and super method.

COD, ROR, DDL,

AOR, IOD, SCD.

Create Subscription In the create subscription code,

there are relational operators,

arithmetic operators, conditional

operators, decorators, overriding

methods, and super methods.

IOD, COD, ROR,

DDL, SCD, IOP,

AOR, COD.

Based on the type of mutation operator in Table 3, the mutant program for each function tested can

be obtained. For example, the mutant program for the authentication function can be seen in Table 4.

Table 4. Authentication Mutant Program

Original Program Mutation

Operator

Mutant Program

{% if redirect_field_value %}

<input type="hidden" name="{{

redirect_field_name }}"

value="{{ redirect_field_value

}}" />

{% endif %}

COD <input type="hidden"

name="{{

redirect_field_name

}}" value="{{

redirect_field_value

}}" />

if self.request.user.type ==

"SALES":

ROR if self.request.user.type !=

"SALES":

LOGIN_REDIRECT_URL =

"clients:list_client"

CRP LOGIN_REDIRECT_URL =

"clients:list_user"

if user_role == "SALES": ROR if user_role != "SALES":

The number of mutant programs that can be generated from the authentication function is four.

Mutant version one is symbolized by m1 and so on according to the number of mutant programs generated.

These mutant programs will be tested using the same model used to test the original program.

https://doi.org/10.35508/jicon.v11i2.12443

J-Icon : Jurnal Informatika dan Komputer 181
Vol. 11 No. 2, Oktober 2023, pp. 174-184
DOI: 10.35508/jicon.v11i2.12443

ISSN:2337-7631 (Printed)

ISSN: 2654-4091 (Online)

Experiments with Mutation Testing

The process of testing test cases on the mutant program is done in the same way as testing test cases

on the original program. This test will be used to check whether the mutant that has been created is

successfully detected by the test case. If the results of testing the mutant program are different from the

results of testing the original program, then the test case created successfully kills the mutant program, but

if the results of testing the mutant program are the same as the original program, then the test case cannot

kill the mutant program. The test results can be seen in the eclipse console which shows whether the test

case passes or fails.

Testing Result

The results of the MBT implementation on five functions of the Kawn Subscriptions Manager

application and the adequacy calculation of the test cases generated by MTB with mutation testing were

obtained. In the application of MBT, five models were generated, where one model describes the flow of

one function. Each model generates methods consisting of edges and vertices. Table 5 shows all the

methods generated by the models. e_EdgesName represents edges and v_VerticesName represents vertices.

Table 5. Behavioural Model Result

Function
Methods

Edge Vertex

Authentication e_OpenLoginPage v_LoginPage

e_InputCorrectCredentials v_ClientPage

e_OpenLogoutPage v_LogoutPage

e_Logout

e_InputEmptyCredentials

e_InputIncorrectCredentials

Create User e_OpenLoginPage v_LoginPage

 e_InputCorrectCredentials v_ClientPage

 e_OpenUserPage v_UserPage

 e_OpenCreateUserPage v_CreateUserPage

 e_InputCorrectData v_SuccessCreateUser

 e_Close v_AlertIncorrectData

 e_InputIncorrectData v_AlertEmptyData

 e_InputEmptyData

 e_Cancel

Create Outlet e_OpenLoginPage v_LoginPage

 e_InputCorrectCredentials v_ClientPage

 e_OpenOutletPage v_OutletPage

 e_OpenCreateOutletPage v_CreateOutletPage

 e_InputCorrectData v_SuccessCreateOutlet

 e_Close v_AlertIncorrectData

 e_InputIncorrectData v_AlertEmptyData

 e_InputEmptyData

 e_Cancel

Create

Subscription Plan

e_OpenLoginPage v_LoginPage

e_InputCorrectCredentials v_ClientPage

e_OpenSubscriptionPlanPage v_SubscriptionPlanPage

e_OpenCreateSubscriptionPlanPage v_CreateSubscriptionPlanPage

e_InputCorrectData v_SuccessCreateSubscriptionPlan

e_Close v_AlertIncorrectData

e_InputIncorrectData v_AlertEmptyData

e_InputEmptyData

e_Cancel

Create

Subscrciption

e_OpenLoginPage v_LoginPage

e_InputCorrectCredentials v_ClientPage

e_OpenSubscriptionPage v_SubscriptionPage

e_OpenCreateSubscriptionPage v_CreateSubscriptionPage

e_InputCorrectData v_SuccessCreateSubscription

e_Close v_AlertIncorrectData

e_InputIncorrectData v_AlertEmptyData

https://doi.org/10.35508/jicon.v11i2.12443

J-Icon : Jurnal Informatika dan Komputer 182
Vol. 11 No. 2, Oktober 2023, pp. 174-184
DOI: 10.35508/jicon.v11i2.12443

ISSN:2337-7631 (Printed)

ISSN: 2654-4091 (Online)

Function
Methods

Edge Vertex

e_InputEmptyData

e_Cancel

Based on the modelling of system behaviour, a total of 73 methods were obtained, consisting of 42

edges and 31 vertices. Each of these methods will be used to generate test cases for the purpose of testing

the five application functions that have been determined. The number of test cases to be written corresponds

to the number of methods generated by the behaviour model. Table 6 shows the results of testing using

MBT on one of the functions, namely authentication.

Table 6. Authentication Original Testing Result

Edge/Vertex Number Traversed Result

e_OpenLoginPage 2 PASS

v_LoginPage 7 PASS

e_InputCorrectCredentials 2 PASS

v_ClientPage 2 PASS

e_OpenLogoutPage 2 PASS

v_LogoutPage 2 PASS

e_Logout 2 PASS

e_InputEmptyCredentials 2 PASS

e_InputIncorrectCredentials 1 PASS

Based on the test results, it can be obtained that all vertices and edges are successfully executed at

least once. Based on the test results on the authentication function, it is obtained that there is no failure in

the authentication function. The test results on the other four functions also show that there are no failures

in the function. After testing with MBT, then testing with mutation testing is carried out. The results of

mutation testing on the authentication function can be seen in Table 7.

Table 7. Authentication Mutant Testing Result

Edges/Vertex Original m1 m2 m3 m4

e_OpenLoginPage PASS PASS PASS PASS PASS

v_LoginPage PASS PASS PASS PASS PASS

e_InputCorrectCredentials PASS PASS PASS PASS PASS

v_ClientPage PASS PASS PASS FAIL PASS

e_OpenLogoutPage PASS PASS PASS FAIL PASS

v_LogoutPage PASS PASS PASS FAIL PASS

e_Logout PASS FAIL PASS FAIL PASS

e_InputEmptyCredentials PASS PASS PASS PASS PASS

e_InputIncorrectCredentials PASS PASS PASS FAIL PASS

Based on the mutation testing results table on the authentication function above, it can be obtained

that there are two mutants that can be killed by the test case. These mutants are mutant versions one and

three which can be killed by at least one test case/method. It can also be seen that there is one equivalent

mutant, namely mutant version two. Mutant version two produces the exact same output as the original

program and none of the test cases are able to detect the existence of the mutant. This is different from

mutant version four, although there is no test case that detects the fault created in the program, but the

output produced is different from the original program so that mutant version four is not an equivalent

mutant.

The difference in output that cannot be detected by test cases or methods in the authentication

function occurs because mutant version four has the same behaviour as the original program. In testing, it

was found that all vertices and edges were skipped at least once. However, there is a difference in the

number of client lists displayed on the client list page. This difference cannot be captured because the test

case only checks where the user is directed after login.

Based on the mutation testing results, the mutation score from mutation testing of the authentication

function with N = 4, D = 2, E = 1 can be calculated with Equation 1.

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 = 100 ∗
2

(5 − 1)
= 66.67

https://doi.org/10.35508/jicon.v11i2.12443

J-Icon : Jurnal Informatika dan Komputer 183
Vol. 11 No. 2, Oktober 2023, pp. 174-184
DOI: 10.35508/jicon.v11i2.12443

ISSN:2337-7631 (Printed)

ISSN: 2654-4091 (Online)

Then, the mutation score for the authentication function is 66.67%. Mutation scores for all

functions can be seen in Table 8.

Table 8. Testing Result

Function
Edges/

Vertex

Number

of

Mutant

Kill

Mutant

Equivalent

Mutant

Mutation

Score

Authentication 9 4 2 1 66.67%

Create User 16 5 2 2 66.67%

Create Outlet 16 17 11 3 78.57%

Create Subscription Plan 16 9 6 0 66.67%

Create Subscription 16 17 14 0 82.35%

Total Mutation Score 360.93%

Based on the table above, it is obtained that there is no test suite or function that reaches 100%

mutation score. The highest mutation score is obtained from the create subscription function with a mutation

score of 82.35% and the lowest mutation score is obtained from the authentication, create user and create

subscription plan functions with a mutation score of 66.67%. Based on observations during the experiment,

the difference in mutation score from each function can be influenced by several things as follows:

1. Mutant type: Mutants that are successfully killed by the test case are mutants that affect the flow

or behaviour of the Kawn Subscriptions Manager application. Mutants that only affect the

amount of data displayed on an application page and affect the process of adding data to the

database cannot be detected by the test case.

2. Quality of test cases: Test cases generated by MBT are limited to how the system runs or how it

moves from one state to another under certain conditions.

3. Program code complexity: Each function in the tested Kawn Subscriptions Manager application

has a different program code complexity. Functions that have low complexity tend to have fewer

mutants and a lower mutation score than functions that have high complexity. Complexity in this

case can be seen from the number of operators, methods, constants and classes used in each

function.

From Table 8, it is obtained that the total mutation scores of this test is 360.93%. This result is

obtained from the sum of the mutation scores of the five functions that have been tested using mutation

testing. Then the average mutation score can be calculated with Equation 2.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 =
360.93%

5
= 72.18%

Based on the calculations above, it is obtained that the average mutation score of MBT

implementation in testing the Kawn Subscription Manager application measured using mutation testing is

72.18%.

4. CONCLUSION AND SUGGESTION
Based on the results of the research that has been done on testing the Kawn Subscriptions Manager

application with the MBT method and calculating the mutation score to calculate the adequacy level, the

following conclusions can be drawn:

1. The application of the model-based testing method to the five functions of the Kawn

Subscriptions Manager application tested resulted in five behavioural models with a total of 73

methods consisting of 31 vertices and 42 edges and the test results showed no failures found in

the Kawn Subscriptions Manager application.

2. Test cases generated by applying model-based testing have a mutation score level of 72.18% or

in the medium category or can be said to be quite adequate. Based on observations made, it was

found that model-based testing cannot detect mutants that do not change the behaviour of the

application.

However, testing the Kawn Subscriptions Manager application is still only limited to five functions,

so in the next test it is expected that all functions in the application can be tested with the MBT method.

The MBT method used to test the application also produces test items that are only able to detect mutants

that change application behaviour but not mutants that affect the amount of data displayed and data that is

not successfully saved to the database. Therefore, another method is needed that is able to detect these types

of failures.

https://doi.org/10.35508/jicon.v11i2.12443

J-Icon : Jurnal Informatika dan Komputer 184
Vol. 11 No. 2, Oktober 2023, pp. 174-184
DOI: 10.35508/jicon.v11i2.12443

ISSN:2337-7631 (Printed)

ISSN: 2654-4091 (Online)

REFERENCES
[1] J. F. S. Ouriques, E. G. Cartaxo, and P. D. L. Machado, “Test Case Prioritization Techniques for

Model-Based Testing: A Replicated Study,” Aug. 2017. [Online]. Available:

http://arxiv.org/abs/1708.03240
[2] V. Singh and S. Ramasamy, “An exploration of model based testing,” Article in International Journal

of Scientific and Engineering Research, vol. 6, no. 2, 2015, [Online]. Available:

https://www.ijser.org/paper/An-Exploration-of-Model-Based-Testing.html. [Accessed 10 October

2022].

[3] R. Reddy, P. Syed, and A. Irtaza, “Software Testing: A Comparative Study Model Based Testing VS

Test Case Based Testing,” 2012. [Online]. Available:

https://api.semanticscholar.org/CorpusID:17864120. [Accessed 10 October 2022].

[4] L. Apfelbaum and J. Doyle, “Model Based Testing,”, May 1997. [Online]. Available:

https://api.semanticscholar.org/CorpusID:8815835. [Accessed 10 October 2022].

[5] H. Felbinger, F. Wotawa, and M. Nica, “Empirical study of correlation between mutation score and

model inference based test suite adequacy assessment,” in Proceedings - 11th International Workshop

on Automation of Software Test, AST 2016, Association for Computing Machinery, Inc, May 2016, pp.

43–49. doi: https://doi.org/10.1145/2896921.2896923

[6] M. Utting, A. Pretschner, and B. Legeard, “A TAXONOMY OF MODEL-BASED TESTING,” 2006.

doi: https://doi.org/10.1002/stvr.456

[7] L. L. Muniz, U. S. C. Netto, and P. H. M. Maia, “TCG: A model-based testing tool for functional and

statistical testing,” in ICEIS 2015 - 17th International Conference on Enterprise Information Systems,

Proceedings, SciTePress, 2015, pp. 404–411. doi: https://doi.org/10.5220/0005398604040411

[8] M. N. Zafar, W. Afzal, E. Enoiu, A. Stratis, A. Arrieta, and G. Sagardui, “Model-Based Testing in

Practice: An Industrial Case Study using GraphWalker,” in ACM International Conference Proceeding

Series, Association for Computing Machinery, Feb. 2021. doi:

https://doi.org/10.1145/3452383.3452388

[9] J. Korhonen, W. Afzal, and E. P. Enoiu, “Automated Model Generation Using GraphWalker Based On

Given-When-Then Specifications,” 2020. [Online]. Available: https://www.diva-

portal.org/smash/get/diva2:1451401/FULLTEXT01.pdf. [Accessed 10 October 2022].

[10] X. Y. Djam and Y. H. Kimbi, “A Fault-Based Testing Approach in Safety Critical Medical Systems,”

Journal of Software Engineering and Applications, vol. 13, no. 06, pp. 129–142, 2020, doi:

https://doi.org/10.4236/jsea.2020.136009

[11] R. Just, G. M. Kapfhammer, and F. Schweiggert, “Do redundant mutants affect the effectiveness and

efficiency of mutation analysis?,” in Proceedings - IEEE 5th International Conference on Software

Testing, Verification and Validation, ICST 2012, 2012, pp. 720–725. doi:

http://dx.doi.org/10.1109/ICST.2012.162

[12] A. Derezińska and K. Hałas, “Experimental evaluation of mutation testing approaches to Python

programs,” in Proceedings - IEEE 7th International Conference on Software Testing, Verification and

Validation Workshops, ICSTW 2014, IEEE Computer Society, 2014, pp. 156–164. doi:

https://doi.org/10.1109/ICSTW.2014.24

[13] A. Derezinska and M. Rudnik, “Evaluation of mutant sampling criteria in object-oriented mutation

testing,” in Proceedings of the 2017 Federated Conference on Computer Science and Information

Systems, FedCSIS 2017, Institute of Electrical and Electronics Engineers Inc., Nov. 2017, pp. 1315–

1324. doi: https://doi.org/10.15439/2017F375

[14] R. Maxion, “Experimental Methods for Computer Science Research,” Institute of Electrical and

Electronics Engineers (IEEE), Sep. 2009, pp. 136–136. doi: https://doi.org/10.1109/LADC.2009.29

https://doi.org/10.35508/jicon.v11i2.12443
http://arxiv.org/abs/1708.03240
https://www.ijser.org/paper/An-Exploration-of-Model-Based-Testing.html
https://api.semanticscholar.org/CorpusID:17864120
https://api.semanticscholar.org/CorpusID:8815835
https://doi.org/10.1145/2896921.2896923
https://doi.org/10.1002/stvr.456
https://doi.org/10.5220/0005398604040411
https://doi.org/10.1145/3452383.3452388
https://www.diva-portal.org/smash/get/diva2:1451401/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1451401/FULLTEXT01.pdf
https://doi.org/10.4236/jsea.2020.136009
http://dx.doi.org/10.1109/ICST.2012.162
https://doi.org/10.1109/ICSTW.2014.24
https://doi.org/10.15439/2017F375
https://doi.org/10.1109/LADC.2009.29

