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ABSTRACT 
Discovering the optimal model in today's popularity of various machine learning applications remains 

an essential challenge. Besides data dependency, the performance of classification models is also affected 

by deciding on suitable algorithm with optimal hyperparameter settings. This study conducted a 

hyperparameter optimization process and compared the accuracy results by applying various classification 

models to the observation dataset. This study obtains data from the Sloan Digital Sky Survey Data Release 

18 (SDSS-DR18) and Sloan Extension for Galactic Understanding and Exploration (SEGUE-IV). The 

SDSS-DR18 and SEGUE-IV provide observational data of space objects, such as stellar spectra with 

corresponding positions and magnitudes of galaxies or stars. The SDSS-DR18 dataset contains magnitude 

and redshift data of celestial objects with target features of stars, Quasi Stellar Objects (QSOs), and 

galaxies. The SEGUE-IV dataset contains equivalent-width parameters, inline indices, and other features 

to the radial velocity of the corresponding star spectrum. This study utilized several machine learning 

models, such as k-Nearest Neighbor (KNN), Gaussian-Naive Bayes, eXtreme Gradient Boosting 

(XGBoost), Random Forest, Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP). This 

study utilized Bayesian, Grid, and Random-based approaches to find the optimal hyperparameters to 

maximize the performance of the classification model. This study proved that some classification models 

have improved accuracy scores through the Bayesian-based hyperparameter optimization settings. This 

study discovers the XGBoost model shows the highest classification results after hyperparameters 

optimization compared to other models for both datasets with an average accuracy of 99.10% and 95.11%, 

respectively.  

Keywords: Machine Learning, Hyperparameter Optimization, Sky Object Classification. 

 

1. INTRODUCTION  
Classification with machine learning has become a powerful tool for various applications [1]. Machine 

learning capabilities allow computers to perform classification processes based on patterns and 

characteristics learned in the data. Despite the rising popularity of machine learning applications, 

identifying which classification models consistently produce the most accurate results remains a crucial 

challenge. The quality, amount, and relevance of the data utilized in the training process have a significant 

impact on the classification model's performance [2]. However, beyond the data, the efficiency of 

classification models is also determined by selecting the best algorithms with optimal hyperparameter 

settings. Therefore, a systematic approach is essential to identify the best-suited algorithms with the most 

suitable model settings for achieving optimal classification performance. 

Machine learning algorithms are often used in science, especially astronomy. Over the past few years, 

the Sloan Digital Sky Survey (SDSS) project, which attempts to map a quarter of the sky, has produced 

much observational data [3]. SDSS provides observational data in the form of physical, atmospheric, and 

spectral parameters of various celestial objects that are freely accessible. Astronomers were gradually 

unable to manually categorize and label celestial objects in the future due to the vast amount of data with 

which newly discovered celestial objects. Thus, utilizing machine learning classification algorithms is 

meant to help overcome this problem. 

Several categorization algorithms efficiently process vast amounts of data already developed into 

classification models. It is used to predict a target variable from new data. Classification models with 

diverse methodologies are often used for sky object classification problems [4][5]. In this study, several 

classification models are applied, such as k-nearest Neighbor (KNN), Gaussian Naive Bayes, Support 

Vector Machines (SVM), Random Forest, eXtreme Gradient Boosting (XGBoost), and Multi-Layer 

Perceptron (MLP), to classify sky object observation data. The models used in this study were selected 
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based on their simplicity and ease of interpretation (Random Forest, Gaussian Naive Bayes, and KNN), as 

well as their ability to capture the underlying patterns of the data and produce high accuracy (XGBoost and 

MLP)[6].The performance of each classification model is shown by comparing the categorized results. The 

classification results from the various algorithms will be compared to determine the performance of each 

classification model created. 

This study aims to obtain optimal performances through configuration variable settings known as 

hyperparameters. They differ from parameters, which are variables derived from data. Machine learning 

model hyperparameters are tuned manually before the training process [7]. It also regulates the algorithm's 

structure and complexity. Grid-based and randomized searches are the most common approaches in 

determining optimal hyperparameters [8]. Grid-based search systematically uses all possible 

hyperparameter settings, requiring high computational time. Random-based search uses a subset of samples 

taken from the overall hyperparameter settings, showing efficiency but not comprehensiveness. Bayesian-

based hyperparameter search applies a probabilistic approach to all possible hyperparameter settings, thus 

showing consistency and faster convergence to the optimal hyperparameter settings [9]. Therefore, 

Bayesian-based search is applied in this study to find the optimal hyperparameters for each model.  

 

2. MATERY AND METHODOLOGY 
Data 

This study uses observational data from the Sloan Digital Sky Survey 18th release (SDSS-DR18) and 

Sloan Extension for Galactic Understanding and Exploration (SEGUE-IV). The SDSS dataset contains 

magnitude and redshift data of celestial objects with target variables of stars, Quasi Stellar Objects (QSOs), 

and galaxies. This study obtained 10,000 data samples from the SDSS-DR18 source and divided them into 

three classes. The obtained data consist of 4795, 4089, and 1116 samples for the galaxy, star, and the QSO 

class, respectively. Each sample has eighteen features such as objid, ra, dec, u, g, r, i, z, run, rerun, camcol, 

field, specobjid, redshift, plate, mjd, fiberid, and class as classification target.  

The SEGUE-IV dataset included in SDSS-V contains an equivalent width of several stellar spectral 

lines [10]. This study obtained 4148 data samples from the SDSS-V Stellar Parameter Pipeline (sppLines) 

table. Each sample in the SEGUE dataset has 78 parameters, with the teffadopt feature as the classification 

target, which is the average stellar effective temperature calculated in various ways. As shown in Table 1, 

each sample teffadopt feature is divided into specific spectral classes for the target classification model.  

Table 1. Spectral Classes of teffadopt 

Spectral Classes  

(label) 

teffadopt  

(°K) 

O 28,000 - 50,000 

B 10,000 - 28,000 

A 7,500 - 10,000 

F 6,000 - 7,500 

G 4,900 - 6,000 

K 3,500 - 4,900 

M 2,000 - 3,500 

L < 2,000 

Preprocessing 

This study removed six features, such as objid, run, rerun, camcol, and field, from the first dataset 

(SDSS DR-18 dataset) that were unrelated to the classification process. The features u, g, r, i, z (better 

ofDeV/Exp magnitude fit) are Thuan Gunn astronomical magnitude systems representing the response of 

the 5-band telescope. This study finds a high correlation between these several features. These features are 

then simplified by the Principal Component Analysis (PCA) method into three new features called PCA_1, 

PCA_2, and PCA_3 to accelerate the convergence of the classification process as done in previous studies 

[11]. Reducing features were not performed on the second dataset (SEGUE-IV dataset). The correlation of 

each feature was low in the second dataset. As a result, all features from the second dataset were retained 

so models could learn more information. This study utilizes the minimum-maximum scaling method 

(MinMaxScaler) with a minimum value limit of 0 and 1 for the maximum limit to reduce the impact of the 

different values in the two datasets. Any missing value samples in both datasets will be removed from the 

overall dataset if more than 20% of the total data. Meanwhile, the median of the valid values will be given 

as an estimation of the samples if the missing values do not exceed 20% of the total data. 
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Model 

This research uses several classification models, such as k-Nearest Neighbor (KNN), Gaussian-Naive 

Bayes, eXtreme Gradient Boosting (XGBoost), Random Forest, Support Vector Machine (SVM), and 

Multi-Layer Perceptron (MLP).  

1. Gaussian-Naive Bayes 

Naive Bayes is a parametric or non-parametric classification algorithm based on Bayesian concepts 

[12]. This method is usually more appropriate for categorical datasets [13]. This study utilizes the 

Gaussian (normalized) distribution function to improve the performance of the Naive Bayes method 

in handling continuous data. There is the equation (1), (2), and (3). 

𝜇 =  
∑ 𝑣𝑗

𝑛
𝑗=1

𝑛
 (1) 

𝜎2 = √
∑ (𝑣𝑗−𝜇𝑘)2 𝑛

𝑗=1

𝑛−1
 (2) 

𝑃(𝐸𝑖 = 𝑣𝑗|𝐶𝑘) =
1

√2𝜋𝜎𝑘
2

𝑒
−

(𝑣−𝜇𝑘)2

2𝜎𝑘
2

 (3) 

Equation (3) calculated the probability of a possible classification  [14]. 𝑃(𝐸𝑖 = 𝑣|𝐶𝑘) denoted the 

probability of an attribute/feature in a particular class, where the 𝐶𝑘 {𝐶1, 𝐶2, … , 𝐶𝑙} denoted the k–th 

known label or class, and 𝐸𝑖{𝐸1, 𝐸2, … , 𝐸𝑚} denoted the i–th attribute or features. Based on equation 

(1) and (2), 𝜇𝑘 and 𝜎𝑘
2 denoted the mean and standard deviation parameters, respectively. 𝑣𝑗 

{𝑣1, 𝑣2, … , 𝑣𝑛} denotes j–th value of a particular attribute/feature. m and n as the number of 

attributes/features and data, respectively. Lastly, l denotes the number of labels or data classes. 

2. k-Nearest Neighbors (KNN) 

KNN is simple non-parametric classification algorithm that categorizes a vector of new sample data 

(𝑦;   𝑦 ∈ ℝ𝑚) against most training data with a class determined by the nearest k-value [15]. The 

nearest neighbor of y is the closest distance of the new sample to each training data sample (𝑥𝑖; 1 ≤
𝑖 ≥ 𝑛 where n is the number of data).  

𝑑(𝑦, 𝑥𝑖) =  ∥ 𝑦 − 𝑥𝑖 ∥2 (4) 

𝑙𝑦 =  
c

maxarg (∑ 𝛿(𝑐 =   𝑙𝑖
𝑁𝑁)  (𝑥𝑖

𝑁𝑁, 𝑙𝑖
𝑁𝑁)∈ 𝑇𝑘

) (5) 

In Equation (4), 𝑑(𝑦, 𝑥𝑖) denoted the distance function between the data. The l2 norm is a form of 

Euclidean distance that determines the closest distance between the new sample data and the training 

data. In Equation (5), 𝑙𝑦 denoted the prediction of the class label of sample data y, with 𝑎𝑟𝑔 𝑚𝑎𝑥 as 

an argument that gives the highest value to the function, 𝛿(𝑐 =   𝑙𝑖
𝑁𝑁) denoted the Dirac-delta function 

(1 if met the condition and 0 otherwise). 

3. Support Vector Machine 

SVM is a classification algorithm that uses the concept of hyperplanes that separate classes in feature 

space [16]. SVM is effective for handling high-dimensional issues with limited training data [17].   

𝑓(𝑥) = 𝑤𝑇𝑥𝑖 + 𝑏𝑖 (6) 

In Equation (6), 𝑓(𝑥) denoted decision function that calculates the distance from the data point to the 

hyperplane boundary region. The 𝑓(𝑥) is positive if the data point is classified into the positive class 

{𝑤𝑇𝑥𝑖 + 𝑏𝑖 ≥ 1}, and negative if the data point is classified into the negative class {𝑤𝑇𝑥𝑖 + 𝑏𝑖 < 1}. 

𝑤𝑇  denoted the transpose of the weight vector perpendicular to the hyperplane that determines the 

orientation of the hyperplane. 𝑏𝑖 denoted the intercept line parallel to the hyperplane boundary line. 

4. Random Forest and eXtreme Gradient Boosting (XGBoost) 

Random Forest and XGBoost are ensemble classification algorithms that utilize the concept of 

decision trees to make predictions  [18] [19]. The decision tree model was developed independently 

in the Random Forest model, and the final forecast is usually made by classification of the individual 

tree projections. The decision tree in the XGBoost model is built sequentially with a gradient descent-

based optimization process. 

𝑓𝑖(𝑥) = ∑ 𝑤𝑘,𝑖 ∙ 𝐼(𝑥 𝜖 𝑅𝑘,𝑖)
𝐾
𝑘=1  (7) 

In Equation (7), 𝑓𝑖(𝑥) denoted the predicted probability or class label of the i-th tree for data point x. 

The notation K is the number of leaves in the decision tree, with 𝑤𝑘,𝑖 denoted the weight of leaf-k of 

https://doi.org/10.35508/jicon.v13i2.18493


 
J-Icon : Jurnal Informatika dan Komputer   80 

Vol. 13 No. 2, October 2025, pp. 77~84 

DOI: 10.35508/jicon.v13i2.18493 

  

  

 

 

 

ISSN: 2337-7631 (Printed) 

ISSN: 2654-4091 (Online) 

tree-i. 𝐼(𝑥 𝜖 𝑅𝑘,𝑖) denotes an indicator function, which takes the value one if x as the input belongs to 

leaf-k of tree-i and zero otherwise. 

5. Multi-Layer Perceptron (MLP) 

MLP is a classification algorithm that often uses the back-propagation method, which is usually 

combined with gradient descent to adjust the weights and bias to minimize the loss function [20].  

𝑧𝑖 =  𝑊𝑖,𝑘𝑥𝑖 + 𝑏 (8) 

In Equation (8),  𝑧𝑖 denoted the i-th hidden layer that connects the input to the output layer. The 𝑥𝑖 

denoted the i-th input data vector and the 𝑊𝑖,𝑘 denoted the weight matrix from the i-th input vector to 

the kth node of the i-th hidden layer.  

Evaluation methods and metrics 

This study utilized cross-validation as a method to evaluate the model's performance. Cross-validation 

provides a better approach to distributing training and testing data and is fair in distributing data evenly for 

the evaluation process [21]. This study utilized the accuracy score as a metric to measure the cross-testing 

process of each classification model. The accuracy score is calculated to show the ratio of correct 

classification results to total data. This study used ten cross-tests to evaluate each classification procedure, 

producing an average accuracy across all tests. 

 

3. RESULT AND DISCUSSIONS 
 

This study conducts modeling experiments and compares the classification results of optimized 

models on a personal computer with AMD Ryzen 5 5500U CPU specifications (2.1 GHz), 16 GB of 

memory, and Microsoft 11 operating system. This study utilizes the Python programming language with 

the Jupyter Notebook compiler. Several tools used to help build the model were obtained from TensorFlow 

version 2.9.1. Tables 2 and 3 show comparisons of classification experiments results towards sky object 

data consisting of stars, galaxies, and QSOs from the SDSS-DR18 observational dataset. Table 2 shows the 

results of each model using hyperparameter settings set based on grid-based (KNN, Gaussian-Naive Bayes, 

and SVM) and random-based (Random Forest, XGBoost, and MLP) searches. 

Table 2. Classification of sky objects (stars, galaxies, and QSOs) with  

grid-based and random-based hyperparameter optimization. 

Model 

Avg. 

Accuracy 

(%) 

Optimization 

time (seconds) 

Training 

Duration 

(seconds) 

MLP 98.73 372.617871 678.905342 

Random Forest 98.64 17.399989 31.267240 

XGBoost 98.36 8.486558 16.335466 

Gaussian-Naïve Bayes 98.03 2.884586 0.037334 

SVM 96.95 9.154659 9.245392 

KNN 91.54 30.870617 0.300714 

Based on the results and computation time from Table 2, the MLP model shows the highest level of 

accuracy compared to other models for the classification of celestial objects (stars, galaxies, and QSOs) 

with an average cross-test score of 98.73%. Meanwhile, the KNN model shows the lowest accuracy with 

an average cross-test score of 91.54% for the same data classification. Table 3 shows comparisons of 

classification experiments result towards SDSS-DR18 dataset but utilize the hyperparameter settings set 

based on Bayesian search. Table 3 shows that few model accuracies increased, although there is no 

significant difference compared to the results obtained in Table 2. 

Table 3. Classification of sky objects (Stars, Galaxies, and QSOs) with  

Bayesian-based hyperparameter optimization. 

Model 

Avg. 

Accuracy 

(%) 

Optimization 

time (seconds) 

Training 

Duration 

(seconds) 

XGBoost 99.10 361.407815 7.702596 

MLP  98.73 284.410771 16.377885 

Random Forest 98.68 543.397319 14.029526 

Gaussian-Naïve Bayes 98.03 34.873845 0.038479 

SVM 96.95 247.178102 9.036567 

KNN 91.87 57.822821 0.330243 
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The XGBoost model shows the highest average score of 99.10%. Meanwhile, the KNN model still 

shows the lowest average score of 91.87%. The optimal hyperparameter settings of the Bayesian-based 

search results for each model against the SDSS-DR18 dataset are shown in Table 4.  

Table 4. Optimal hyperparameter settings for sky object classification  

(Stars, Galaxies, and QSOs) 

Model hyperparameter settings 

XGBoost ‘colsample_bytree’: 0.7, ‘gamma’ : 0.3, 

‘learning_rate’ : 0.05, ‘max_depth’ : 4, 

‘min_child_weight’: 3 

MLP  ‘solver’ : ‘lbfgs’, ‘max_iter’: 10000, 

‘learning_rate_init’: 0.01, ‘hidden_layer_sizes’: 

(32, 64),    ‘alpha’ : 0.01,   ‘activation’ : ‘relu’ 

Random Forest ‘max_depth’ : 80, ‘max_features’ : 3, 

‘min_samples_leaf’ : 3, ‘min_samples_split’: 8 

Gaussian-Naïve Bayes ‘var_smoothing’ : 6.579332246575682e-08 

SVM ‘C’ : 30,    ‘kernel’: ‘rbf’ 

KNN ‘metric’ : 'manhattan',   ‘n_neighbors’: 4, 

‘weights’ : ‘distance’ 

Table 5 and 6 show comparisons of classification experiments results towards stellar (Stars) 

spectrum data (SEGUE-IV). Table 5 shows the results of each model using hyperparameter settings set 

based on grid-based (KNN, Gaussian-Naive Bayes, and SVM) and random-based (Random Forest, 

XGBoost, and MLP) searches. Table 5 results show that the XGBoost model has the highest accuracy 

compared to other models on classification stellar (stars) spectrum class with an average score of 94.89%. 

Meanwhile, the Gaussian-Naïve Bayes model shows the lowest accuracy with an average score of 88.67%. 

Table 6 shows comparisons of classification experiments result towards SEGUE-IV dataset but utilize the 

hyperparameter settings set based on Bayesian search. 

Table 5. Classification of stellar (stars) spectrum class with grid-based and  

random-based hyperparameter optimization. 

Model 

Avg. 

Accuracy 

(%) 

Optimization 

time (seconds) 

Training 

Duration 

(seconds) 

XGBoost 94.8891 22.993319 9.086410 

SVM 94.8411 1.806240 0.950489 

Random Forest 94.6966 17.532088 66.116585 

MLP 94.3350 63.287882 21.337056 

KNN 93.8284 19.782861 0.761138 

Gaussian-Naïve Bayes 88.6698 4.044270 0.072424 

Table 5 results show that the XGBoost model has the highest accuracy compared to other models on 

classification stellar (stars) spectrum class with an average score of 94.89%. Meanwhile, the Gaussian-

Naïve Bayes model shows the lowest accuracy with an average score of 88.67%. Table 6 shows 

comparisons of classification experiment results with the SEGUE-IV dataset, but it utilizes the 

hyperparameter settings set based on Bayesian search. After conducting hyperparameter optimization 

experiments using grid-based, random, and Bayesian approaches, MLP, SVM, and Gaussian Naive Bayes 

(GNB) showed minimal accuracy improvements due to inherent model limitations and data compatibility 

issues. GNB’s limitation of feature independence made it fundamentally incompatible with the second 

dataset, as real-world data rarely meets this assumption. SVM’s performance is heavily dependent on kernel 

choice. Experimenting with the second dataset with 78 features, the kernel likely already operated near-

optimally, leaving little room for improvement through tuning parameters like C or gamma. Similarly, 

MLP flexibility was constrained by the smaller size (4,148 samples) of the second dataset, limiting its 

ability to benefit from deeper architectural tuning. Therefore, we conclude that these models’ performance 

was bottlenecked by their design and data compatibility, making hyperparameter optimization less 

impactful compared with models like XGBoost and Random Forest, which are inherently more adaptable 

to the datasets structures. 
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Table 6.  Classification of stellar (stars) spectrum class with 

 Bayesian-based hyperparameter optimization. 

Model 

Avg. 

Accuracy 

(%) 

Optimization 

time (seconds) 

Training 

Duration 

(seconds) 

XGBoost 95.1060 982.638881 14.582254 

SVM 94.8411 79.392844 0.940902 

Random Forest 94.7449 491.712202 6.966766 

MLP 93.9005 235.157569 31.069682 

KNN 93.8042 77.947090 0.748705 

Gaussian-Naïve Bayes 88.6698 25.142494 0.069767 

Table 7. Optimal hyperparameter settings for stellar (stars) spectrum class. 

Model hyperparameter settings 

XGBoost ‘colsample_bytree’: 0.4, ‘gamma’ : 0.4, 

‘learning_rate’ : 0.2, ‘max_depth’ : 10, 

‘min_child_weight’: 1 

SVM ‘C’ : 10,    ‘kernel’: ‘linear’ 

Random Forest ‘max_depth’ : 80, ‘max_features’ : 3, 

‘min_samples_leaf’ : 3, ‘min_samples_split’: 12 

MLP  ‘solver’ : ‘adam, ‘max_iter’: 10000, 

‘learning_rate_init’: 0.01, ‘hidden_layer_sizes’: 

(8, 16),    ‘alpha’ : 0.01,   ‘activation’ : ‘relu’ 

KNN ‘metric’ : 'manhattan',   

‘n_neighbors’: 10, ‘weights’ : ‘distance’ 

Gaussian-Naïve Bayes ‘var_smoothing’ : 0.3511191734215131 

 

4. SUMMARY 
This study utilized six supervised learning algorithms to classify two observational datasets obtained 

from the Sloan Digital Sky Survey 18th release (SDSS-DR18) and Sloan Extension for Galactic 

Understanding and Exploration (SEGUE-IV). The SDSS-DR18 dataset contains 10000 samples with 

features such as magnitude and redshift of stellar objects, and target features consist of Stars, QSOs, and 

Galaxies. The SEGUE-IV dataset contains 4148 samples with features such as equivalent-width parameters, 

inline indices, and other radial velocity features to the corresponding star spectrum. This study utilizes a 

Bayesian-based hyperparameter search to determine the optimal settings that maximize the performance of 

the classification model.  

This study shows that the XGBoost algorithm provides the best performance compared to the other 

models for both datasets, with an average accuracy of 99.10% and 95.11%, respectively. Despite resource 

constraints using personal computers for this study, the experiment successfully achieved high accuracy 

goals for large-scale data. It proves the model's effectiveness for large-scale sky survey classification. While 

optimization time for the XGBoost model took forty-two times longer, it is a notable trade-off because 

accuracy is often mission-critical in scientific applications. This study found that the optimal 

hyperparameter settings of the XGBoost model for classification of the SDSS-DR18 database include 

colsample_bytree of 0.7, gamma of 0.3, learning_rate of 0.05, max_depth of 4, and min_child_weight of 

3. Meanwhile, the optimal hyperparameter settings for the XGBoost model for classification of the SEGUE-

IV database include colsample_bytree of 0.4, gamma of 0.4, learning_rate of 0.2, max_depth of 10, and 

min_child_weight of 1.  

This study proved that some classification models have improved accuracy scores through the 

Bayesian-based hyperparameter optimization. We intentionally avoided handling data imbalance to 

maintain the robustness and real-world applicability of the models. By keeping the datasets in their original 

imbalanced state, we ensured that the results reflected how the models would perform on primary data, 

which is critical for evaluating their suitability for real-world sky object classification tasks. Introducing 

imbalance-handling techniques (e.g., over-sampling, under-sampling, or class weighting) could artificially 

inflate accuracy or mask weaknesses, leading to biased conclusions about model performance. However, 

future work could explore these techniques to address potential skews in class distributions, as imbalance 
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handling might improve minority class recall and overall generalizability, especially for models like GNB 

or KNN that struggle with imbalanced data. Also, this could provide a more comprehensive understanding 

of the model's behavior across different data scenarios. Further improvement can explore the possibilities 

of other ensemble classification techniques that may outperform the XGBoost algorithm. 
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