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ABSTRAK 
Kustomisasi massal berkaitan dengan peningkatan keseimbangan antara kebutuhan perusahaan 

yang difokuskan pada pelanggan pada kondisi fleksibilitas dan efisiensi produksi. Penyesuaian produk yang 

sesuai kebutuhan pelanggan dapat meningkatkan daya saing perusahaan. Namun, proses dan penyesuaian 

produksi yang khusus memerlukan waktu lebih dan biaya yang tidak efisien. Pemodelan produk parametrik 

merupakan teknik yang cukup populer untuk menangani masalah ini. Namun, masih memiliki tantangan 

terkait biaya yang tinggi pada harga perangkat lunak serta tenaga kerja yang mempunyai keahlian khusus 

pada bidang kualitas kontrol. Selain itu, desain khusus produk tidak dapat diuji secara cepat, sehingga 

berdampak pada waktu produksi yang cukup lama. Penelitian ini mengusulkan metode Machine Learning 

(ML) yang bertujuan agar mendapatkan struktur waktu yang cepat untuk menganalisis hasil produksi 

fixator ortopedi. Proses penelitian ini membutuhkan kumpulan data latih dengan atribut produk, 

karakteristik fisik, kualitas, teknik ML yang dipilih, dan penentuan set hyperparameter yang tepat. Hasil 

optimasi diperoleh dengan menggunakan metode gradient boosting dengan nilai 𝑅2  >  0,99. Dengan hasil 

tersebut, perangkat fixator ortopedi dapat digunakan dalam studi kasus pengembangan model pembelajaran 

mesin ini. 

Kata kunci: Desain, Kustom, Fixator, Machine Learning, Produk Kustom 

 

ABSTRACT 
Mass customization is related to increasing the balance between the needs of companies that are 

focused on customers on conditions of production flexibility and efficiency. Product adjustment according 

to customer needs can increase the company's competitiveness. However, special production processes and 

adjustments are time consuming and cost inefficient. Parametric product modeling is a fairly popular 

technique for dealing with this problem. However, it still has challenges related to the high cost of software 

and a workforce that has special expertise in the field of quality control. In addition, product-specific 

designs cannot be tested quickly, resulting in a long production time. This study proposes a machine 

learning (ML) method that aims to obtain a fast time structure to analyze the production of orthopedic 

fixators. This research process requires a collection of training data with product attributes, physical 

characteristics, quality, selected ML techniques, and determination of the appropriate set of 

hyperparameters. Optimization results were obtained using the gradient boosting method with a value of 

𝑅2  >  0.99. With these results, the orthopedic fixation device can be used in the case study of developing 

this machine learning model. 
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1. INTRODUCTION 
The ability to be able to make visualization of special products according to customer requirements 

quickly [1][2], and high ability adjustment in complex processes [3], is a big leap in the industrial world. 

Increasing efficiency and process collaboration will involve more reliable and accurate digital information 

systems [4][5]. The latter exposes broad and diverse real-time data on operations, logistics, and product life 

cycles, while the former drives service trends [6]. This article helps verify specific products at competitive 

costs, in a relatively shorter time, and practice using technology that is very popular today, namely Machine 

Learning (ML). The complexity and large number of parameters for modelling a particular product are 

common problems in the world of manufacturing [7]. The criteria that the customer wants, low cost, spare 

parts, basic materials are used as calculation material to determine product prices. 

Changes in the product's shape, tension, quantity and material properties are significant because 

of the specific demands of the physical product [8]. Visual simulations for products under special conditions 

are used as initial tests on exploitation conditions using Elemental Analysis (EA) [9]-[11]. For mass custom 

processes, structural analysis is often not used due to the use of time and cost of software which is very 

expensive, requires high expertise to operate the device and has high service costs [12][13]. Figure 1 depicts 

the scenario of the corporation performing procedures that are routinely performed in bulk. The designer 

must create the model promptly due to consumer demand. Designers must be able to compile generic 

models. This requires a close link between the designer and the Computer-Aided Design(CAD).  

 
Figure 1. The principle of operation of model design in real time 

An adequate amount of data and selection of appropriate and relevant product features and 

parameters significantly affect the level of accuracy of the model resulting from the process with the 

selected ML algorithm [14][15]. Because this process runs in real time, it does not require additional costs 

(hidden costs). Custom product results can be quickly validated in a custom fixator product illustration 

design that matches customer demand.  

Related research that has been carried out by [16] proposes a simplification and consequent cost 

and reduction of the duration of customized production workflows, by eliminating the need for traditional 

structural analysis in the design of customized product samples from product families represented by 

parametric models. It introduces a concept called compiled Finite Element Analysis (FEA). The Gradient 

Boosting model that has been compiled with FEA is related to mass customization by optimizing the 

balance between flexibility, the model is capable of realtime structural analysis [17]. 

2. RESEARCH METHOD 
Using the experimental features obtained from the EA design, parameters are selected for training 

data in the ML algorithm. The result of the training process made in Python is a matrix model. This matrix 

model will be used to predict several product parameters with specifications according to customer wishes. 

To determine the correlation of each parameter and the physical properties of a particular product, Pearson's 

coefficient is used with the Recursive Feature Elimination method (RFE) [18]. 

Testing a model resulting from an ML training process consists of running tests against test data 

and measuring the level of results using the Mean Absolute Error (MAE) metric. The ML methods used 

are Support Vector Machine Regression (SVR), Decision Tree (DTR), Random Forest (RFR), and Gradient 

Reinforced Regression (GBR). The two ML methods chosen for use are K-Nearest Neighbor (KNN) and 

Support Vector Machine (SVM). For performance, K-fold cross-validation is used in figure 2. 

Verification is used to forecast each output characteristic, i.e. the product's physical qualities. 

Model performance is predicted to vary depending on the estimators used for specific physical property 

data. As a result, all models linked with the best possible combination of parameters are serialized. The one 
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with the best performance for a particular physical attribute is obviously used for prediction. To achieve 

search optimization, it is done by selecting the best predictive results from a particular data set [19]. 

 
Figure 2. Proposed experimental flow 

The following major Python libraries are used for developing and using ML predictive models 

(figure 3). 

• Numpy is a library for handling large multidimensional arrays and matrices and a set of related 

mathematical functions for manipulating them. 

• Pandas is a data manipulation and analysis library released in 2008. It contains DataFrame objects most 

commonly used to manipulate data in software implementing some form of machine learning. 

• Sckit-learn [20], is a library that can be used by Python to perform various data preprocessing and 

feature engineering. 

• Matplotlib is a plotting library.  

• Pickle is a Python module that implements serialization and deserialization of Python object structures. 

 
Figure 3. Python libraries are used for developing 

 

3. RESULTS AND DISCUSSION 
Case Study 

For the case of an orthopedic device (an internal fixator used in subtrochanteric femur (femur) 

fractures), a constructed model was created. This is true for highly configurable goods that must be tailored 

to specific needs based on the patient's physical and physiological traits, fracture patterns, and so on. This 

work is supported by research. In the CAD software SolidWorks, a parametric model of the fixator was 

generated. It is specified in this case by six connected geometric characteristics and a fixed design. The 

model's schematic is illustrated in figure 4.  

The produced datasets are fed into popular ML workflows. This data collection has 89 rows and 9 

parameters (figure 5). In one example study, a modest number of data instances, i.e. a uniform distribution 

of criteria values throughout a specified area, were employed for convenience and because the data created 

using the Design of Experiments feature was highly representative. A boxplot depicts the distribution of 

the output feature data within the dataset. Figure 6 depicts the total strain peak, equivalent stress, and 

standard deviation of the fixator mass. 

https://doi.org/10.35508/jicon.v11i1.9919
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Figure 4. Internal Fixator 

 

 
Figure 5. Dataset in Frame 

 

 
Figure 6. Distribution of output feature data 

Correlation Analysis 

Pearson's linear correlation method and RFE were used to analyze data correlation (recursive 

feature elimination). The study's purpose is to determine whether the problem's dimensionality may be 

reduced by excluding any of the input variables from the training dataset. Python makes computing and 

displaying the correlation matrix straightforward. 

From figure 5 it can be seen that the linear correlation (p) is: 

a. -95% for total deformation and bar length 

b. 89% for fixator mass and rod length 

c. -65% for rod length and tension 

d. -63% for bar tip thickness and tension 

https://doi.org/10.35508/jicon.v11i1.9919
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It can be seen that a very linear correlation is: 

a. -25% to stem diameter and Maximum Total Deformation 

b. -39% for fixator mass and stem diameter 

Other input factors, such as deformation, stress, and mass, had no significant linear association 

with output variables. The radius trochanteric unit, radius bar end, and clamp distance may be eliminated 

from the model as a result. The scatter plots (figure 7) indicate the relationship between several geometrical 

characteristics and physical properties. 

The problem with Pearson coefficient-based linear correlation is that it can only assess the 

importance of particular input characteristics for predicting output. One input characteristic may have 

relatively little association with the output, it may appear that when combined with the others, its 

modifications may have a big impact on the output features. 

As a consequence, a RFE technique is utilized to evaluate the relevance ranking of subsets of the 

input features to augment the correlation analysis. RFE is a feature removal method that operates in reverse. 

The algorithm begins by collecting all features and gradually eliminates those having the least effect on the 

output features. In this situation, you can use whatever technique you choose, including basic linear 

regression, SVM, decision trees, random forests, and gradient-boosting regressors. KNN is a forgery since 

the regressor does not disclose a description of his RFE. The RFE method computes rankings. It is a 

measure of the predictive power of individual input appearance paired with additional factors. The rank is 

calculated in the range (1.5). Lower value means higher correlation. All outcome are then displayed in 

batten graphs, effectively categorizing them by different characteristics. 

 
Figure 7. Correlation between individual geometric features and physical properties (Pearson) 

The RFE technique and all algorithms clearly establish the importance of the first three input 

characteristics in figure 8. Because the data in the RFE computation was not standardized, the SVM 

regressor gave outlier results (a requirement for SVR). Using various approaches, RFE demonstrates that 

clamping distance, as input characteristic #5, is beneficial for predicting comparable stress and deformed 

mass. Many ML algorithms' behavior and performance are said to as probabilistic because they include 

randomness (random state initialization in models, random selection of data in K-fold cross-validation, 

etc.). As a result, a metric generated by an ML model is often computed as a statistical measure (such as 

the mean) of a population of particular metric values generated by the ML model across numerous runs. 

Over numerous RFE runs, the relevance of parenthesis in predicting various output properties is not 

consistently seen. As a result, it, along with the trochanteric unit radius (feature #3) and rod end radius 

(feature #4), is removed from the final collection of features. 

Nevertheless, it is critical to note that the option to lower the complexity of the parameter set in 

this situation is unfeasible due to the product's low complexity. This rigorous technique, on the other hand, 

can assist obtain decisive benefits for very complicated items with hundreds of factors. 
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Figure 8. Correlation ranking of individual geometric features and physical properties (RFE method) 

Compiled Models 

According to the suggested notion, the assembled model is a sequential ML model that determines 

physical product attributes depending on attribute values. The developed model should be able to forecast 

three particular physical properties: total combined deformation, highest stress and strain, and attachment 

load. Before constructing the simulation, the finest algorithm from a pre-selected selection should be 

chosen. LR, KNN, SVM Regression, DT Regression, RF, and GB Regression are all in table 1. 

The selected ML algorithms were then fitted to the data set using standard hyperparameters, and 

the accuracy outcomes of the generated models were compared. For verification, k-fold cross-validation 

(k=4) was performed [21]-[24], and the metric negative mean absolute error (NMAE) was used. The same 

KFold object is used in all connected operations to obtain comparable data. Entities are set up to not merge 

data. This is because utilizing random sampling to seek data for convolution is futile with such a small 

sample size. Figure 8 depicts the outcomes of the tests. All of the NMAE parameters are significantly lower 

than the standard deviations of the output characteristics under examination, indicating that they are clearly 

within tolerances for structural analysis of this product type. Given the Pearson coefficient's great linear 

correlation, we are certain that the linear regression strategy will yield favorable results. 

Table 1. The results of the testing 

 LRE KNN SVR DTR RFR GBR 

Total Deformation Maximum -0.182 -0.799 -0.573 -0.054 -0.080 -0.034 

Equivalent Stress -39.679 -57.302 -64.250 -20.639 -17.876 -18.423 

Fixator Mass -0.004 -0.020 -0.024 -0.002 -0.002 -0.001 

Estimator Optimization 

For hyperparameter boost, a grid search strategy was applied. The NMAE is employed in the table 

below, however another measure, the regression value R2, was used for optimization. The highest possible 

score is 1.0, which may be negative (because the model can get promptly worse). To find the best set of 

hyperparameters for each output feature (physical characteristic) and estimator, iterative trellis search 

optimization is utilized. Mesh refinement optimization presented a set of hyperparameters that substantially 

enhanced the performance of K-nearest neighbors and SVR models. Using random forests and gradient-

boosting estimators, significant improvements in estimating comparable stresses have been made. 

Table 2. The predictor with the best set of hyperparameters 

 LRE KNN SVR DTR RFR GBR 

Total Deformation Maximum -0.182 -0.331 -0.094 -0.167 -0.107 -0.047 

Equivalent Stress -39.679 -37.421 -26.510 -16.522 -14.460 -13.867 

Fixator Mass -0.004 -0.009 -0.024 -0.004 -0.004 -0.002 

Several implications may be drawn from the R2 score values. Overall, random forest and gradient 

boosting fared the best, as expected. Despite the risk of overfitting, these two ensemble techniques are the 

most commonly used by practitioners to deal with regression and classification problems. Because the input 

features are balanced, overfitting is not a significant concern in our case. The gradient boosting estimator 

predicts the fixator's mass and maximum total deformation with R2 > 0.99 and the corresponding stress 

with R2 = 0.91 using the revised hyperparameters. Random forest predicted stator mass (R2 = 0.92) and 

maximum gross deflection (R2 = 0.95), whereas SVR predicted maximum gross deflection (R2 = 0.98). The 

NMAE indicator values post-learning the predictor with the best set of hyperparameters are displayed in 

the table 2. A table of NMAEs predicted by the estimator using the default hyperparameter settings is 

provided below for comparison (table 3). 

https://doi.org/10.35508/jicon.v11i1.9919
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Table 3. The estimator using the default hyperparameter 

 LRE KNN SVR DTR RFR GBR 

Total Deformation Maximum -0.182 -0.799 -0.573 -0.054 -0.080 -0.034 

Equivalent Stress -39.679 -57.302 -64.250 -20.639 -17.876 -18.423 

Fixator Mass -0.004 -0.020 -0.024 -0.002 -0.002 -0.001 

 

4. CONCLUSION 
A new industrial reality is a tendency toward mass customization, which implies the requirement 

to develop and construct personalized product designs with efficiency approaching mass manufacturing. 

Clearly, this development is posing new issues in the manufacturing and bespoke product design industries. 

The majority of the difficulties originate from the need to strike the correct balance between the flexibility 

demanded by customer-centric sectors and the efficiency required to remain competitive in the marketplace. 

In more conventional sectors, this balance is frequently sought through the deployment of outsourcing 

strategies, especially for crucial manufacturing processes. Another approach is digitization. This allows for 

swift decision-making and helps you to adapt quickly to changing supply and demand scenarios. 

Improvements in AI approaches and technologies enable the digitization of even knowledge-intensive 

procedures, not only cutting throughput times but also drastically lowering total production costs. 

The suggested method addresses the issue of lengthy and costly bespoke product design 

procedures, particularly the requirement for unique (costly) expertise to produce FEM models, a large 

amount of computer power, and pricey FEA applications. A limited collection of parameters defines all 

parametric models (primarily geometric features). To ensure design integrity, the values of these parameters 

are often varied within defined ranges. The degree of connection between these numbers and the actual 

physical attributes of the product determines critical ordering rules. This procedure now includes a 

customization sub-step in which customers and designers collaborate to best fulfill the client's requirements 

while preserving the product's integrity and manufacturability under the intended circumstances of usage. 

Live, real-time design negotiations. 

The suggested novel approach is based on the compiled FEA model, which provides the best 

approximations to non-geometric properties critical to the usage behavior and manufacturability of specific 

product designs. During geometric parameter tweaking, compiled FEA models are used to offer real-time 

verification of critical non-geometric features as well as rapid assessment of the projected product's physical 

attributes. Furthermore, the proposed technique opens the door to new collaborative business models in 

which CAD and his FEA specialists' tasks are distributed among enterprises and FEA is conducted as an 

online platform. 
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