PEMANFAATAN BIOGAS UNTUK KEMANDIRIAN ENERGI PEDESAAN

Wenseslaus Bunganaen¹⁾, Dominggus Adoe²⁾ ^{1,2)}Dosen Tetap Jurusan Teknik Mesin FST Undana

e-mail: godliefmesin@gmail.com

Abstract

Pemanfaatan energi yang tidak dapat diperbaharui secara berlebihan dapat menimbulkan masalah krisis energi. Salah satu gejala krisis energi yang terjadi akhir-akhir ini yaitu kelangkaan bahan bakar minyak (BBM), seperti minyak tanah, bensin, dan solar. Kelangkaan terjadi karena tingkat kebutuhan BBM sangat tinggi dan selalu meningkat setiap tahunnya. Sementara itu, minyak bumi bahan baku pembuatan BBM berjumlah terbatas dan membutuhkan waktu berjuta-juta tahun untuk proses pembentukannya. Biogas merupakan teknologi pembentukan energi dengan memanfaatkan limbah, seperti limbah pertanian, limbah peternakan, dan limbah manusia. Selain menjadi energi alternatif, biogas juga dapat mengurangi permasalahan lingkungan, seperti polusi udara dan tanah.Kondisi tersebut sebenarnya merupakan peluang usaha untuk dijadikan bahan baku pembuatan biogas. Hasil dari pembuatan biogas dapat dijadikan sumber energi serta sisa keluaran berupa lumpur (sludge) dapat dijadikan pupuk siap pakai sehingga dapat menambah penghasilan bagi peternak sapi itu sendiri. Selain itu biogas juga dimanfaatkan untuk keperluan sehari-hari seperti memasak dan penerangan, dan dapat digunakan sebagai bahan bakar pure biogas dengan genset skala 2.500 Watt karena produksi biogas rata-rata sebesar 0,040 m³ per 30 menit atau 0,080 m³/jam.

Kata Kunci: biogas, digester, energi terbarukan, anaerobik.

PENDAHULUAN

Dalam rangka pemenuhan keperluan energi rumah tangga khususnya diperdesaan maka perlu dilakukan upaya yang sistematis untuk menerapkan berbagai alternatif energi yang layak bagi masyarakat. Sehubungan dengan hal tersebut maka salah satu upaya terobosan yang dilakukan adalah melaksanakan sosialisasi program dan pelatihan pemanfaatan biogas skala rumah tangga sebagai sumber energi alternatif yang ramah lingkungan. Fermentasi kotoran ternak menjadi biogas merupakan sebuah proses produksi gas bio dari material organik dengan bantuan bakteri. Biogas sebagian besar mengandung gas metana (CH4) sebesar 55%-65% dan karbon dioksida (CO2) sebesar 35%-45%, dan beberapa kandungan yang jumlahnya sekitar 0% - 1%diantaranya hydrogen (H2), oksigen (O2), nitrogen (N2) dan Hidrogen Sulfida (H2S) (Abdul Kadir, 1987). Energi yang terkandung dalam biogas tergantung dari konsentrasi metana (CH4). Kandungan metana yang semakin tinggi akan menyebabkan semakin besar pula kandungan energi (nilai kalor) pada biogas, sebaliknya. Tujuan penelitian ini adalah untuk memanfaatkan potensi penggunaan biogas

pada pilot project reaktor biogas yang sudah terinstalasi, sehingga diharapkan hasil pengujian ini dapat digunakan sebagai tahap awal untuk mengetahui bagaimana potensi biogas sebagai sumber energi baru ramah lingkungan yang siap untuk dikomersialisasikan

METODE PENELITIAN

Metode untuk mengatasi permasalahan kelompok usaha akan diuraikan dalam metode pendekatan, kegiatan pendampingan serta manufaktur reaktor, lebih jelasnya diuraikan di bawah ini;

a) Metode Observasi

Metoda ini dilakukan penulis dengan cara mengukur langsung parameter-parameter yang berkaitan dengan *Pilot Plant* Biogas yang terinstalasi. Pengujian produksi biogas bertujuan untuk mengetahui produksi biogas yang dihasilkan *digester* perhari.

Pengujian biogas diawali dengan persiapan bahan baku yaitu kotoran sapi yang dihasilkan dari peternakan. Kotoran sapi dicampur dengan air dalam bak pencampur dengan perbandingan 1:1 sampai campuran homogen dengan menghasilkan *slurry*.

b) Studi Literatur

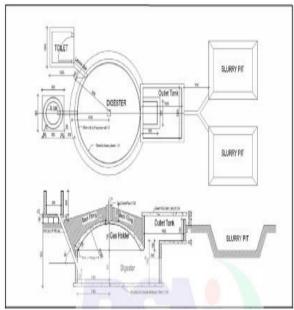
Dalam hal ini penulis melakukan pencarian data literatur baik melalui internet, *textbook*, dokumentasi, jurnal ilmiah, dan sebagainya yang berhubungan dengan masalah biogas sebagai alternatif pembangkit listrik.

HASIL DAN MANFAAT

Hasil yang dicapai dari kegiatan ini berupa penerapan teknologi reaktor biogas berstandar SNI dengan hasil luaran gas methana dan pupuk organik.

Tabel 1. Standar kelas unit penghasil biogas dengan tangki pencerna (digester) tipe kubah tetap dari beton

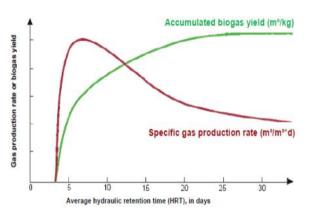
No	Standar kelas	Kapasitas tempat pengolahan ^a (m³)	Produksi gas per hari (m³)	Kotoran hewan yang dibutuhkan per hari ^b (kg)	Air yang dibutuhkan setiap hari (liter)	Jumlah ternak yang dibutuhkan
1	Kecil	4 s.d. 12	0,7 – 4	20 - 120	20 - 120	2-6
2	Sedang	>12 s.d. 25	2,2 - 8,5	60 - 250	60 - 250	6 – 12
3	Besar	>25 s.d. 50	4,5 - 17	125 - 500	125 - 500	12 – 25


^a Kapasitas tempat pengolahan artinya volume tangki pencerna

Spesifikasi Reaktor

Tabel 2. Persyaratan standar mutu unit penghasil biogas dengan tangki pencerna (digester) tipe kubah tetap dari beton

Parameter	Satuan	Standar kelas			
raidiletei	Jatuan	Kecil	Sedang	Besar	
I. Tangki pencerna		rtoon	ocuang	Dodai	
Volume tangki pencerna	m ³	4 s.d. < 12	12 s.d. < 25	25 s.d.< 50	
Volume ruang gas minimum	m ³	1 s.d. < 3	3 s.d. < 6.25	6.25 s.d.<	
Volume roung gas minimum	""	10.0.	0 0.0. 4 0,20	12.5	
Bentuk pondasi tangki pencerna			rata/irisan bola	,0	
Ketebalan beton pondasi tangk	cm	7 – 10	10-12	12-15	
pencerna				12 10	
Tebal dinding dan kubah tangk	cm	10-12	12 – 16	16 – 241	
pencerna					
II. Pemasukan bahan baku					
Bak pencampur bahan baku					
a. Ukuran minimum bentuk perseg	cm	60x60x50	60x60x50	100x75x5	
tanpa pengaduk (p x l x t)					
 b. Ukuran minimum bentuk silinder 	cm	60x60	60x60	70x60	
dengan pengaduk (t x d)					
2. Saluran pemasukan bahan baku					
 a. Beda tinggi inlet outlet (posis 	cm	15-35	15-35	15-35	
outlet lebih rendah dari inlet)					
b. Tinggi outlet diukur dar		80-95	80-95	80-95	
permukaan air tangki pencerna					
ketika gas kubah terisi penuh c. Diameter	inci	4-8	8-10	8-12	
d. Jarak lubang terbawah		25-50	25-50	25-50	
pemasukan dari lantai pondasi	CIII	20-00	20-00	20-00	
e. Kemiringan saluran pemasukar	derajat	45-60	45-60	45-60	
terhadap horizontal tangk		10 00	10 00	10 00	
pencerna					
III. Ukuran Manhole					
a. Tipe 1 Manhole (p x l)	cm	60x60	60x60	60x60	
b. Tipe 2 Manhole					
 Manhole 1 (di atas kubah) (d) 	cm	55	55	55	
 Manhole 2 (p x l): 	cm	40x50	40x50	40x50	
IV. Bak penampung keluaran lumpu	r	ukuran disesuaikan dengan volume			
organik		tangki pencerna			
V. Peralatan saluran pengeluaran gas					
a. Pipa pengeluaran gas		0545	0545	0545	
- Diameter luar	inci	0,5-1,5 4-5	0,5-1,5 4-5	0,5-1,5	
- Tebal pipa (min.)	mm			4-5	
b. Katup utama (main valve) wajib dipasang ^{a)}					
^{a)} Katup utama dipasang di dekat kubah, mudah dijangkau, dan terjamin keamanannya.					


^b Contoh hitungan untuk kotoran sapi dengan rasio air dan kotoran 1:1, rata-rata waktu penyimpanan: 40-60 hari

Skematis desain tangki pencerna biogas tipe 1 *Manhole*-a untuk ukuran 6 m³.

			Standar Kelas			
Parameter		Bahan	Kecil	Sedang	Besar	
	Volume unit biogas (m³)		4 s.d. < 12	12 s.d. < 25	25 s.d. < 50	
I.Sistem jaringan pipa						
a.	Katup	Kuningan, Nikel, PVC	1/2"	1"	2"	
b.	Shock	PVC	1/2"	1"	2"	
C.	Knee	PVC	1/2"	1"	2"	
d.	Pipa	PVC	1/2"	1"	2"	
u.		Plastik	1/2"	1"	2"	
	Class les samanfact	Plastik	1/8-1/2"	1/8-1/2"	1/8-1/2"	
e.	Slang ke pemanfaat	Karet	1/8-1/2"	1/8-1/2"	1/8-1/2"	
II.	Manometer air	Plastik, atau mika atau kaca	1 – 50 cm	1 – 50 cm	1 – 50 cm	
III.	Perangkap air (water trap)	Plastik, PVC	0,1-2 L	2-5 L	5-10 L, otomatic water drain	
IV.	Pengukur aliran gas	Mika				
٧.	Bahan Penjerap H₂S	mineral	0,5-2 Kg	2,5-5 Kg	5-10 Kg	

Syarat peralatan jaringan unit biogas

Grafik literatur rasio produksi biogas vs waktu – *batch test* (Lfu 2007)

Produksi biogas harian sangat bergantung kepada volume pemasukan slurry (Maulana, 2011), oleh karena itu untuk mendapatkan produksi gas yang maksimal sesuai ukuran digester maka sebaiknya 0,5 m³ setiap harinya.

1. KESIMPULAN

- a. Permasalahan yang dihadapi mitra terpecahkan dengan adanya teknologi tepat guna Reaktor biogas.
- Biogas dari kotoran ternak dapat menjadi salah satu jawaban atas permasalahan energi di pedesaan.
- c. Kurangnya produksi biogas dapat disebabkan beberapa faktor diantaranya faktor suhu yang terlalu tinggi, kurangnya kotoran yang dimasukan kedalam *digester*, perbandingan campuran *slurry* yang tidak homogen.

REFERENSI

- 1. Agung., 2007. Panduan Lengkap Budidaya Gurami. AgroMedia Pustaka, Jakarta.
- Daryanto., 1993. Dasar-Dasar Teknik Mesin. Rineka Cipta, Jakarta.
- Hernowo, A. dan S. R. Suyanto., 2008. Pembenihan dan Pembesaran Lele Dipekarangan, Sawah dan Longyam. Penebar Swadaya, Jakarta.
- 4. Halim, A., 2009. Analisis Kelayakan Investasi Bisnis: Kajian dari Aspek Keuangan. Graha Ilmu, Yogyakarta.
- L. Sasse, Biogas Plants. A Publication of the Deutsches Zentrum für Entwicklungstechnologien - GATE in: Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH, 1988.
- 6. Maulana Arifin, 2011. Study Of Biogas For Power Generation At Pesantren S Aung Balong Al-Barokah, Majalengka, West

- Java. Journal of Mechatronics, lectrical Power, and Vehicular Technology Vol. 02, No 2, pp 73-78, 2011.
- 7. Mudjiman, A., 1996. Makanan Ikan. Penebar Swadaya, Jakarta.
- 8. Niemenns G., 2000, Machine Element, 4 th Edition, Mc Graw-Hill book Co.
- 9. Nugroho, E. dan A. H. Kristanto., 2008. Panduan Lengkap Ikan Konsumsi Air Tawar Populer. Penebar Swadaya, Jakarta.
- 10. Pratomo, M., 1983. Alat dan Mesin Pertanian. Departemen Pendidikan dan Kebudayaan, Jakarta.
- 11. Spotts, M. F., (1985), Design of Machine Element, Six Edition, India.
- 12. Sularso, dan Kiyokatsu, Suga., (1997), Dasar Perencanaan dan Pemilihan Elemen Mesin, PT. Pradnya Paramita, Jakarta.