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The woven ikat fabric from Nusa Tenggara Timur is a local wisdom that must be 

preserved. Due to its vast array of motifs, users often encounter challenges in its 

recognition. For this study, the TenunIkatNet dataset was employed. One prominent 

recognition method involves classification based on the motif type and geographical 

origin. The efficacy of the classification is heavily contingent upon the method of 

extraction employed. The Convolutional Neural Network (CNN) method is used for 

feature extraction and classification processes. This research compares the 

classification performance of the VGG16 baseline model and the proposed model. 

The proposed model modifies the baseline at the fully connected layer and the 

training process from the first convolution layer. Training the model from the early 
convolution layer aims to adjust the network weights as input to the output layer due 

to the different dataset characteristics. Incorporating elements such as Global 

Average Pooling (GAP), Batch Bormalization (BN), and Dropout have proven 

instrumental in mitigating overfitting. The transfer learning strategy is used for 

feature extraction and classification because the model has been intelligently trained 

on a large dataset. The research findings unequivocally indicate that the 

performance of the modified model supersedes that of the baseline model. Based on 

the evaluation metrics, the proposed model is superior to the baseline model with 

precision, recall, accuracy, and F1-score, respectively 98.73%, 98.54%, 98.54%, 

and 98.53%. 
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1. INTRODUCTION 

Indonesia has a variety of local wisdom in the form 

of traditional fabrics such as batik, songket, and 
woven ikat. Notably, the woven ikat fabric is a 

testament to the cultural wealth of Nusa Tenggara 

Timur (NTT). This fabric emerges from intricate 

weaving techniques employed by the indigenous 
people of NTT. It is meticulously crafted from 

strands of weft or warp yarn pre-emptively bound 

and immersed in natural dyes. The distinguishing 
attributes of woven ikat are encapsulated in its 

foundational materials, the method of fabrication, 

the dyeing process, and the intricate motifs it 
features. Woven ikat fabric has various motifs under 

the diverse culture of the Nusa Tenggara Timur 

community. The inspiration for these motifs often 

stems from variables such as the fabric's 
geographical provenance, its region's 

demographics, and the community's socio-cultural 

fabric. 

Consequently, the motifs of the woven ikat fabrics 

exhibit regional nuances, mirroring the ethos and 

lifestyle of their respective communities. Each 

region's distinct cultural backdrop contributes 

unique patterns and ornamental designs to the 

woven ikat repertoire. For instance, the Sumba 

region is renowned for its weaves adorned with 

animal motifs, while Rote is characterized by its leaf 

motifs. On the other hand, Alor's signature woven 

fabric is distinguished by the warp ikat technique, 

and its hues are derived from organic sources, 

encompassing both flora and marine life, such as 

squid, sea cucumbers, and seaweed [1]. The woven 

ikat from the Timor region is distinctively 

characterized by animal motifs, often bordered by 

narrow pathways, and is further accentuated by 

vivid geometric patterns [2]. The increasing 

diversity in woven ikat motifs, attributed to various 

modifications, poses recognition challenges for 

users. Nonetheless, these modifications do not 

obscure the distinctive characteristics associated 

with specific regions. Many users grapple with 

differentiating between the intricate motifs of ikat 

fabric and their corresponding regions of origin. 

Insufficient foundational knowledge among users 

can lead to a diminished appreciation for local 

wisdom. In contemporary times, there is a pressing 

need for an electronic knowledge base to facilitate 

the recognition of distinct ikat fabric motifs. Based 

on the visual similarities inherent in woven ikat 

fabric images, classification is a prominent 

recognition method. Many studies on classifying 

woven fabrics and batik have established 

benchmarks for feature extraction methodologies. 

The efficacy of recognizing specific motif types is 

intrinsically tied to the feature extraction method 

deployed. Prior research has leveraged the transfer 

learning paradigm, particularly for pretrained 

models. One such pretrained Convolutional Neural 

Network (CNN) model, acclaimed for its state-of-

the-art performance, is VGG16 [3]. Empirical 

evidence suggests that the VGG16 pretrained model 

consistently delivers superior performance [4], [5], 

[6], [7], [8]. The predilection for the transfer 

learning strategy arises from constraints associated 

with training data availability and computational 

efficiency considerations.     

Distinct research endeavors have explored the 

classification and recognition of ikat fabrics, 

employing the Grey Level Co-occurrence Matrix   

(GLCM) and Color Co-occurrence Matrix (CCM) 

methods for texture and color feature extraction [9]. 
Further studies have sought to juxtapose various 

feature extraction techniques in the realm of ikat 

image classification, encompassing edge detection, 
wavelets, and histograms [10]. The recognition of 

woven ikat fabric images is anchored in features 

extracted through the Speeded Up Robust 

Features (SURF) methodology [11]. Another 

noteworthy study by [9] delved into the 

classification of ikat fabrics, achieving an accuracy 
metric of 80% across four distinct classes. A cursory 

review of prior research reveals that several studies 

have reported accuracy rates below the 90% 
threshold and often grapple with dataset limitations. 

Given the unique characteristics of ikat woven 

fabric images, it is imperative to deploy feature 
extraction techniques adept at handling nuances in 

texture, color, shape, and spatial information.  

In the present study, we introduce a model that 

diverges from the traditional baseline and is tailored 
to resonate with the image characteristics endemic 

to NTT woven ikat fabrics. The VGG16 model, 

grounded in CNN architecture and heralded as the 
benchmark in prior research [3], [6]. serves as the 

foundational baseline for this study. A 

comprehensive review of relevant literature 
underscores the preeminence of the CNN method as 

a feature extractor, especially when juxtaposed 

against handcrafted techniques, and this is 

particularly salient for expansive datasets [12].  

This research will classify types of woven ikat 

fabric motifs using transfer learning techniques for 

the baseline model and modification of the VGG16 

model. The classification of woven ikat fabrics 

serves as a foundational knowledge base for 

identifying various motifs and their respective 

regions of origin, facilitating easier recognition for 

end-users. Such identification of woven fabric 

motifs plays a pivotal role in preserving local 
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wisdom, documenting traditional crafts, and 

promoting cultural heritage. Modifications to the 

VGG16 architecture are implemented primarily in 

the fully connected layer (FCL). Specifically, 

Global Average Pooling (GAP), Batch 

Normalization (BN), and Dropout layers are 

integrated into the FCL. These additions mitigate 

the issue of overfitting, particularly in scenarios 

with limited dataset size. Furthermore, a dense layer 

is incorporated to tailor the network to the specific 

number of classes present in the dataset. 

The structure of this paper is methodical, with 

section 2 elucidating the materials and 

methodologies deployed. Section 3 delves into the 

empirical findings, discussions, and avenues for 

future research. The paper culminates with 

conclusions presented in the final section.  

 

2. MATERIALS AND METHODS 

2.1 TenunIkatNet Dataset 

In this study, the utilized ikat fabric dataset 
comprises 120 distinct classes. Each class 
encapsulates 40 images, culminating in a total of 
4,800 images. These images possess dimensions of 
256 x 256 pixels. An augmentation process is 
carried out to increase the amount of training data. 
The augmentation process is carried out on the 
training data. The augmentation techniques 
deployed include zooming, rotation, flipping, and 
shear range adjustments. The dataset was 
systematically partitioned into training, validation, 
and testing subsets, with allocations of 80%, 10%, 
and 10%, respectively. The source of the dataset can 
be accessed via the provided link 
https://github.com/siltena2023/TenunIkatNet.  

 

Figure 1. Several samples of woven ikat fabrics. 

2.2 Research Framework  

The research framework is delineated in a block 

diagram, as depicted in Figure 2. During the image 

pre-processing phase, image data is adjusted to be 

compatible  as  input  for  the  designated  feature 

 extraction model. The model subjected to training 

is a modified version of the VGG16, specifically at 

the fully connected layer. Training is initiated for 
the weight adjustment of the initial convolution 

layer. Evaluative measures were undertaken based 

on the metrics delineated in this study. 

 

Figure 2. Research framework  

2.3 Proposed Method 

The diverse array of NTT ikat fabrics challenges 

users in discerning specific motifs and their 

respective regional origins. Such differentiation 

within multi-class classification represents a 

substantial challenge. To facilitate the recognition 

of ikat fabric motifs, a model underpinned by 

machine learning was developed. A comprehensive 

review of relevant literature reveals that the 

Convolutional Neural Network (CNN) method 

outperforms the handcrafted method in image 

retrieval as a feature extractor [12]. The architecture 

of a CNN encompasses convolution layers, pooling 

layers, and fully connected layers. 

The VGG16 model was chosen for this research as 
the foundational CNN model. The VGG16 

architecture evolved from the AlexNet framework, 

emphasizing the feature extraction process within 

the convolution layer. This design enables the 

capture of diverse image representations suitable for 

classification. The VGG16 model has 13 
convolution layers complemented by three fully 

connected layers [3]. The VGG16 architecture is a 

great model with deeper layers and small 

convolution filter sizes for large datasets. The 
fundamental architecture of VGG16 is illustrated in 

Figure 3.  

Confronting limited datasets poses significant 
challenges for deep learning models. Transfer 

learning emerges as a pivotal strategy to address 

such dataset constraints. This technique capitalizes 
on models that have been previously trained, 

adapting them for the classification of novel 

datasets. The VGG16 model, recognized as state-of-

the-art, has been primed on expansive datasets, 
notably ImageNet. Leveraging such an adept model 

can alleviate computational demands, primarily 

https://github.com/siltena2023/TenunIkatNet
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because it circumvents the need for training from 

scratch, focusing instead on adjustments to the 

model's terminal layer. Nevertheless, in the context 

of this study, modifications were instituted to align 
with the dataset's unique characteristics and to 

enhance overall model efficacy. The modified 

architecture of the VGG16 model, tailored for this 
study, is illustrated in Figure 4. Such modifications 

were implemented to better align with image 

characteristics and to enhance recognition accuracy. 

 

 
Figure 3. Baseline VGG16 model 

 

Figure 4. Modification of the VGG16 model for the 

classification of woven ikat fabric patterns. 

1. Convolution and Max-pooling Function 

Illustration of the convolution process between the 

input image and the filter in Figure 5 and Equation 

1.  
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Figure 5. Convolution and Max-pooling processes [13]. 

 

g(x,y)=f(x,y) x h(m,n)  1 

where h(m,n) is the filter, g(x,y) is the convolution 

image, and f(x,y) is the original image. 

 
2. Activation Functions  

This research uses a non-linear activation function, 

namely Rectified Linear Unit (ReLU) [14] in each 
convolution layer. The ReLU activation equation is 

as follows:  

𝑅(x) = max (0, x) 2 

where x = input value. If the value of  x  0, then 

x=0 and the value of x0, then the value of x=x In 

the output layer, softmax activation is used. The 

output value of the softmax activation function is 
between 0 and 1.  

𝑆(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑛

𝑗=1

 3 

where x= input value, n= number of data.  

 

3. Loss Function 

The loss function serves as a metric to evaluate the 
efficacy of the model's predictive capabilities 

regarding the target variable. In this study, 

categorical cross-entropy was employed due to the 
multi-class nature of the dataset.  

𝐻 = −∑ 𝑃(𝑥)log(𝑃(𝑥))𝑁
𝑥=1  4 

with H = entropi, x = input data, N = number of 

data, and P = probability. 
 

4. Fully Connected Layer 

A fully connected layer is a layer that is used to 
carry out transformations on data dimensions so that 

they can be classified linearly. Before image 

features are entered into the FC layer, Global 
Average Pooling (GAP) is carried out to reduce 

overfitting due to limited training data. In the FC 

layer, Batch Normalization (BN) and Dropout are 

added to handle the overfitting problem caused by 
limited training data. Batch normalization is a 

technique in deep learning used to improve the 

speed and stability of model training. Dropout aims 
to deactivate some neurons that are not needed. In 

this study, the fully connected output was set to 120 

according to the TenunIkatNet dataset. The baseline 

model adds GAP before the extracted features are 
entered into the FC layer. 

Meanwhile, the proposed model at the FC layer 

adds GAP, BN, and dropout to reduce overfitting. 

The proposed model will be trained on 13 

convolution layers. This process aims to adjust the 
weights and biases in the network from the initial 

convolution layer. Three layers of Global Average 

Pooling (GAP), Batch Bormalization (BN), and 
Dropout are incorporated to mitigate the risk of 

overfitting, ensuring the pretrained model adeptly 

represents and learns from novel data. In contrast, 

the baseline model undergoes the transfer learning 
process without modifying the weights and biases 

within the convolution layer. The training scenarios 

for the baseline model and the proposed model are 
illustrated in Figure 6. 

 

Figure 6. Transfer learning process of VGG16 and 

proposed models. 

2.4 Performance Evaluation 

Classification operates as a supervised learning 

procedure, relying on training sets derived from 
historical data. Key performance metrics in 

classification tasks encompass precision, recall, 

accuracy, and the F1-score [15]. For a 
comprehensive evaluation, it is instructive to 

juxtapose the model's classification outcomes 

against the actual classifications facilitated by the 
confusion matrix. The confusion matrix is a tabular 

representation elucidating the performance of a 

classification model on a test dataset for which valid 

values are established. As depicted in Figure 7, the 
confusion matrix encapsulates four distinct 

combinations of predicted and actual values. True 

positive (TP) represents instances where positive 
data is accurately predicted, while True Negative 

(TN) denotes correctly predicted negative data. 

Conversely, False Positive (FP) corresponds to 

instances where negative data is misclassified as 
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positive, and False Negative (FN) signifies positive 

data erroneously predicted as negative [16].  

 

Figure 7. Confusion matrix. 

Precision, as delineated in Equation 5, quantifies the 
proportion of correct positive predictions out of all 

positive predictions made. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (
𝑇𝑃

𝑇𝑃+𝐹𝑃
) 𝑥100%  5 

ecall, often termed sensitivity, provides insight into 

the model's efficacy in retrieving relevant instances. 
It is defined as the fraction of true positives over the 

sum of true positives and false negatives. This 

metric can be ascertained using Equation 6.  

𝑅𝑒𝑐𝑎𝑙𝑙 = (
𝑇𝑃

𝑇𝑃+𝐹𝑁
) 𝑥100% 6 

accuracy serves as an indicator of the model's 

capability to classify instances correctly. 
Essentially, it measures the degree of congruence 

between predicted and actual values. The formula to 

compute accuracy is presented below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
) 𝑥100%  7 

The F1-score is a metric used to compute the 
harmonic mean of precision and recall. An F1score 

approaching 1 signifies a balanced precision and 

recall. 

𝐹1 = (
𝑇𝑃

𝑇𝑃+1 2⁄ (𝐹𝑃+𝐹𝑁)
) 𝑥100%  8 

 

3. RESULTS AND DISCUSSION 

Research on the image classification of NTT ikat 

fabrics was conducted utilizing the Google 
Collaboratory platform. The hardware 

specifications encompassed an Nvidia T4 GPU with 

16 GB GPU memory, a storage capacity of 166 GB, 

and 12 GB RAM. Additionally, computations were 
executed on a personal computer with an i5 10400F 

processor (3.0 GHz), 16 GB RAM, and a 250 GB 

storage capacity. For the implementation of the 
image classification model for ikat fabrics, the 

Python 3 programming environment was employed. 

Pertinent hyperparameters adopted in this study 
include a batch size of 64, a learning rate 0.001, and 

20 epochs. The research leveraged the Adam 

optimizer to update network weights iteratively 

based on the defined loss function. The choice of 
these hyperparameters was informed by extant 

research demonstrating their efficacy[17], [13]. 

3.1 Experimental Results 

The empirical findings indicate proficient 

recognition and classification capabilities for the 

VGG16 baseline model and its modified 
counterpart when handling ikat fabric images. 

Evaluating the training and validation accuracies, 

both models exhibit commendable performance. 

Initial epochs for both models signal to overfit, with 
convergence trends directing toward values of 1 and 

0 for accuracy and loss metrics, respectively. 

Notably, the proposed model manifests heightened 
overfitting tendencies relative to the baseline model. 

Graphical in Figure 8 representations reveal 

persistent overfitting up to the 20th epoch. The 

training and validation accuracy metrics for the 
modified model trail those of the baseline model. 

This disparity can be attributed to the modified 

model's training phase, which emphasizes weight 
adjustments tailored to the new dataset, while the 

baseline model has been pre-trained on a more 

expansive dataset, specifically "ImageNet.

 
(a) 
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(b) 

Figure 8. Graph of training and validation results for accuracy and loss, 

 (a) Baseline model, b)  Proposed model. 

 

The proposed model's architecture facilitates 

learning from novel datasets, enabling weight 

adjustments commencing from the primary 

convolution layer. The efficacy of the training phase 

intrinsically affects subsequent testing with the test 

dataset. The test outcomes underscore negligible 

disparities in accuracy metrics between the training 

and validation phases for both models. The 

proposed  model  showcases  robus t performance,  

demonstrating adept generalization capabilities on 
the TenunIkatNet dataset, notwithstanding its prior 
training on a disparate dataset. Within the research 
context, regularization techniques such as batch 
normalization and dropout have proven efficacious 
in addressing overfitting concerns and have 
subsequently influenced model performance. Table 
1 presents the accuracy and loss metrics for the 
training and validation phases of the two models 
under consideration. 

Table 1. Comparative training results of the baseline and proposed models. 

Model Loss Training Accuracy (%) 
Val. 

Loss 
Val. Accuracy (%) 

Baseline model 0.003 99.78 0.003 99.89 
Proposed model 0.071 98.26 0.353 98.54 

The classification test for the testing data 
encompassed 960 images of ikat woven fabric, 

distinct from those utilized in the training phase. 

According to the established evaluation metrics, the 
proposed model surpasses the performance of the 

baseline model. Figure 9 displays the classification 

report based on the metrics used in this research. 

The proposed model yields values for accuracy, 
precision, recall, and F1-score of 98.542%, 

98.729%, 98.542%, and 98.531%, respectively. 

Conversely, the baseline model demonstrates an 
advantage when evaluating the number of trained 

parameters and the model's footprint. Specifically, 

the baseline model's size is notably more compact 
than the proposed model's.  

A comparative assessment encompassing four key 

metrics, model size, and the number of parameters 

is presented in Table 2. These supplementary 
metrics are derived from the underlying architecture 

of the respective models. 

    
(a) (b) 

Figure 9. Results of image classification of woven ikat fabrics  

(a) baseline model, b)  proposed model 



Jurnal Media Elektro  Vol. XII / No. 2                                           P-ISSN 2252-6692 | E-ISSN 2715-4963 
 

 

DOI 10.35508/jme.v12i2.12579 - Silvester Tena, et al 80 

 

Table 2. Comparison results of the model testing for both classification models. 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Number of 

Parameters 

Model 

size (MB) 

Baseline model (VGG16) 94.688 95.356 94.688 94.559 14,776,248 56.9 

Proposed model 98.542 98.729 98.542 98.531 14,777,272 169.2 

 

The architecture of the resultant model, illustrating 

the sizes of input and output images, is delineated 
in Figure 10. The computation for the number of 

parameters is derived from the product of the filter 

size and the input image size, augmented by the 

bias, and subsequently multiplied by the output 
channel. Within the VGG16 baseline model, the 

parameter count stands at 14,776,248, of which 

61,560 are associated with the fully connected 
layers undergoing training. In contrast, the 

proposed model trains 14,777,272 parameters, 

given that its training scope extends from the initial 

convolution layer to the FC layer. Excluded from 

the training process are 1,024 parameters, 

specifically within the global average pooling and 
dropout layers. A reduction in untrained parameters 

can effectively alleviate computational demands. 

Additionally, the quantity of trained parameters 

intrinsically influences the model's footprint. The 
parameter count is a function of filter size, filter 

count, and input and output dimensions. A larger 

pool of untrained parameters can correspondingly 
diminish the model's size. Optimal performance is 

characterized by a minimal parameter count paired 

with a compact model size, facilitating its 

deployment in real-time applications. 
 

   
 (a) (b) 

Figure 10. Architecture of the model and the quantity of parameters engaged in training 

(a) Baseline model,  (b) Proposed model. 

3.2 Discussion 

This study presents the training performance 

outcomes of the woven ikat fabric image 
classification model, utilizing both the VGG16 

baseline model and the proposed modification. The 

evaluation criteria focus on the model's accuracy 

and propensity for overfitting. Accuracy is defined 
as the proportion of correct predictions from the test 

data, whereas overfitting is assessed by comparing 

the model's training accuracy to its validation 
accuracy. 

The empirical findings suggest that the modified 

model offers superior results to the baseline model. 
The proposed model demonstrates excellence in 

predicting test data against training data categories, 

with only a few classifications deviating from their 

valid category. Notably, the characteristics of NTT 
ikat fabric images diverge from those of the 

ImageNet dataset, which served as the foundational 

training set for the baseline model. Dominated by 

geometric patterns, such as lines, edges, and dots, 
the inherent features of ikat fabrics emerge 

predominantly in convolution layers. Consequently, 

the proposed model, which undergoes training 

starting from the initial convolution layer, shows 
enhanced accuracy in classifying ikat fabric images. 

Despite the constrained size of the TenunIkatNet 

dataset, regulatory methods can mitigate the risk of 
pronounced overfitting. The results underscore the 

efficacy of implementing dropout and batch 

normalization within the fully connected layer in 
curtailing overfitting issues. 

In the context of limited datasets, one could also 

consider designing a more streamlined CNN 

architecture tailored to the distinct visual 
characteristics of NTT ikat fabrics. Given the rich 

foundational features in the images of ikat woven 
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fabrics, a reduced layer depth might be more 

appropriate. The dimensions and quantity of filters 

can have a direct impact on the performance of the 

model. Introducing batch normalization across 
layers can further minimize overfitting. Moreover, 

incorporating global average pooling at the 

culmination of the convolution process, combined 
with dropout layers, can combat overfitting and 

enhance accuracy[17]. 

For future studies, expanding the dataset will offer 

a more rigorous assessment of the proposed model's 
performance. Additionally, testing the model 

against diverse dataset variations, including 

alterations in lighting, geometry, and image 
resolution stemming from varied recording 

instruments, will provide a comprehensive 

evaluation.  
 

4. CONCLUSION 

Ikat woven fabric is renowned for its intricate 
variety of motifs, posing challenges for recognition. 

The cultural significance of the ikat fabric 

underscores the imperative for its preservation. This 
study employs the TenunIkatNet dataset, 

comprising 120 distinct classes and encompassing a 

total of 4,800 images. A prevalent technique for 

identifying these motifs involves classification, 
specifically delineating based on motif type and 

geographical provenance. In this study, the 

Convolutional Neural Network (CNN) method is 
adopted for feature extraction, with a particular 

emphasis on the VGG16 model, recognized for its 

state-of-the-art capabilities. Given the model's pre-

existing proficiency owing to its training on 
extensive datasets, the transfer learning strategy is 

employed for classification. This research 

juxtaposes the performance of the standard VGG16 
model with a modified variant that incorporates 

alterations in the fully connected layer. For the 

proposed model, weight adjustments are initiated 
from the very first convolution layer, a strategic 

move aimed at tailoring the model to the nuances of 

the TenunIkatNet dataset. The rationale behind this 

transfer learning approach is the pursuit of optimal 
model performance. Empirical findings indicate 

that adaptations in the fully connected layer, 

coupled with weight training initiated from the 
primary convolution layer, yield superior results 

relative to the baseline model. Incorporating 

elements like Global Average Pooling (GAP), 
Batch Normalization (BN), and Dropout mitigates 

overfitting and bolsters model performance per 

evaluation metrics. Analyzing the results through 

established evaluation metrics reveals the proposed 
model's supremacy over the baseline, registering 

precision, recall, accuracy, and F1-score values of 

98.73%, 98.54%, 98.54%, and 98.53%, 

respectively. Notably, in terms of trained parameter 

count and overall size, the baseline model is more 
compact than its proposed counterpart. 
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