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ABSTRACT

In addition to achieving optimal generator scheduling, ensuring the safe operation
of the generator itself'is equally important. This paper proposes the implementation
of artificial intelligence for early detection of generator faults in power plants. A
neural network (NN) approach is employed to construct the virtual simulation of
the generator capability curve. The developed visualization model enables
simulation of generator operating behavior while accounting for various
operational constraints and component limitations. Furthermore, the visualization
of the capability curve can effectively illustrate different potential operating
scenarios that may occur in real-world generator operations. It also allows
simulations under special or specific conditions, providing an accurate and flexible
representation of generator performance.

Keywords: Generator, Artificial intelligence, Early detection, Capability curve,

This is an open access article

© 00

under the CCBY-SA License

ABSTRAK

Selain mencapai penjadwalan generator yang optimal, memastikan operasi yang
aman dari generator itu sendiri juga sangat penting. Makalah ini mengusulkan
penerapan kecerdasan buatan untuk deteksi dini kerusakan generator di
pembangkit listrik. Pendekatan jaringan saraf (neural network/NNA) digunakan
untuk membangun simulasi virtual dari kurva kapabilitas generator. Model
visualisasi yang dikembangkan memungkinkan simulasi perilaku operasi generator
dengan mempertimbangkan berbagai batasan operasional dan keterbatasan
komponen. Selain itu, visualisasi kurva kapabilitas dapat secara efektif
menggambarkan berbagai skenario operasi potensial yang mungkin terjadi dalam
operasi generator di dunia nyata. Model ini juga memungkinkan simulasi dalam
kondisi khusus atau tertentu, memberikan representasi yang akurat dan fleksibel
tentang kinerja generator.
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1. INTRODUCTION

Optimization of generator scheduling is primarily
aimed at minimizing the total operating cost of
power plants. Numerous methods have been
developed to achieve cost-efficient operation by
optimizing generator scheduling under various
cases and constraints [1-4]. However, despite
achieving optimal scheduling solutions, it remains
essential to ensure the operational safety of
generators. In power plant operations, generator
safety can be monitored using the Generator
Capability Curve (GCC), which visualizes the
generator’s operating point. A typical synchronous
generator capability curve is presented in [5]. This
curve defines the generator’s operational
boundaries. The capability curve is commonly used
on the generation side to track power variations
resulting from load fluctuations. It provides
information regarding the generator’s operational
limits in supplying power, including restrictions
related to active and reactive power, rotor current,
stator current, stator end-core heating, and steady-
state stability. Each generator possesses a distinct
capability curve that reflects its specific power
capacity. Several studies have examined generator
capability curves [6-9]. For example, [10] proposed
an adaptive analytical approach to analyze
synchronous generator capability curves. In [11],
three different AC optimal power flow formulations
incorporating  generator  capability  curves
represented by D-curves were explored. The study
in [12] analyzed generator operating limits using the
capability curve to determine whether load
shedding is necessary. Meanwhile, [13] utilized the
GCC to improve active power pricing by
considering reactive power. The integration of
active and reactive power components in wind farm
operation through capability curves is discussed in
[14]. Furthermore, [15] presented an -efficient
approximation algorithm for capability curves
within the virtual power plant framework. The use
of capability curves in designing distributed control
for permanent magnet synchronous generators
based on distributed consensus demand response is
examined in [15]. Finally, [15] developed a GCC for
low-voltage ride-through (LVRT) generators
connected to the grid. Although the aforementioned
studies address GCC analysis, protection
coordination, and stability assessment, none have

focused on simulating the capability curve to enable
real-time  virtual monitoring of generator
conditions. Monitoring a generator’s operation
through its GCC can be challenging without direct
access to the plant. Therefore, this study proposes
an alternative approach by simulating the GCC
using a neural network (NN) model to visualize
generator operating conditions virtually. In this
research, the GCC is utilized to monitor the
generator’s operating point and ensure safe
operation. Unlike previous works, the proposed
GCC model is capable of virtually representing
generator operations similar to real conditions. The
GCC is developed using a neural network with
constructive  backpropagation. The  main
contribution of this study is the development of a
virtual visualization tool for simulating the
generator capability curve, enabling monitoring and
visualization of the generator’s operational state.
Moreover, the simulation provides insights into
various possible operating scenarios that may occur
in real power plant operations.

2. RESEARCH METHODS
The generator capability curve is developed using a
neural network (NN) model with a constructive
backpropagation method. The formation process
consists of two stages:

1. Plotting the capability curve to obtain the P-Q

data pairs.
2. Training the neural network using these data
points.

The flowchart of the GCC formation process is
shown in Figure 1. Capability curve plot is done to
get P and Q data pairs from capability curve. How
to plot the generator capability curve is shown in
Figure 2 with three steps of line drawing, the first is
by drawing a line from point O to reach the
boundary of the curve line. Then from the end of the
line pull (the point at the curve line), the next line is
drawn, the first one in the direction of the X axis so
that the length of Q is obtained, the second one is
along the Y axis to obtain the length P. that is, from
the Qnin limit to the curve Q4 limit so that as
many P and @ data pairs as possible are obtained. In
this case, 81 data pairs are generated consisting of P
and —Q data pairs for the leading region and P and
Q data pairs for the lagging region.
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Figure 1. Flowchart of generator capability curve formation.
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Figure 2. How to plot the capability curve.

To ensure that the generator capability curve
produced by the neural network (NN) closely
resembles the actual capability curve, training is
performed using the PQ curve data. The training
process employs a Neural Network based on the
Constructive Backpropagation (CBP) method. The
training procedure is carried out through the
following stages:

1. Data Loading, the PQ data obtained from
the plotted generator capability curve is
stored in Microsoft Excel and subsequently
imported into MATLAB for processing.

Calculation of Complex Power and
Power Angle (6), using MATLAB, the

complex power magnitude and the

corresponding angle are calculated

according to the following equations:
Scurve = V P% + Q* “4)
0 curve = tan~! Q (5)

P

To ensure that the generator capability curve
produced by the neural network (NN) closely
resembles the actual capability curve, training is
performed using the PQ curve data. The training
process employs a Neural Network based on the
Constructive Backpropagation (CBP) method. The
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training procedure is carried out through the
following stages:

L.

Data Loading, the PQ data obtained from the
plotted generator capability curve is stored in
Microsoft Excel and subsequently imported
into MATLAB for processing.

Calculation of Complex Power and Power
Angle (0), using MATLAB, the complex
power magnitude and the corresponding angle
are calculated according to the following
equations:

Scurve
= JP2+ @2 4)

ecurve

_ tan_lg )

. Defining Input and Target Data

Input: angle 0 curve

Target: complex power curve (§) or distance
between center point and curve line (R).
Constructing the Hidden Layer.
The hidden layer is developed incrementally
using the CBP method. Neurons are added one
by one, starting from the smallest number, until
the network achieves an acceptably low error
rate.

Building the Constructive Backpropagation
Network. The training begins with weight
initialization, followed by the feedforward
process implemented using MATLAB’s
newff function. This function creates a
feedforward neural network that transmits
weighted input signals to both hidden and
output layers.

Setting Training Parameters.
Prior to training, several parameters—such as
learning rate, number of epochs, and error
tolerance—are configured to achieve optimal
network performance.

Testing of the generator capability curve from NN
training is carried out to test the safety of the
generator. The algorithm for testing the generator
capability curve of the NN training results is as
follows:

1.

Entering the active power (P) and reactive
power (@) of the original capability curve as

input to the capability curve of the NN
training results.

2. From the P and Q data of original capability
curve, the @ value and the magnitude of the
Rgen are calculated (the power of the
generator complex or the radius of the load
curve)

3. By entering the angle data @ as input to the
NN vyield curve that has been previously
generated, the output of the NN yield
capability curve will be obtained in the form
of Ry¢s (the radius of the NN yield curve)

4.  Generator safety testing is done by comparing
the Rgen and Ryep values. If Rgep < Ryef,
where the difference between Rgep, and Ry.ef
(difference R) is positive, the generator status
is safe. Conversely, if Rgen> Ryef Where the
difference  between Rge, and  Ryef
(difference R) is negative, the generator status
is not safe.

Figure 3 shows the relationship between the

generator operating point (P, @), angle 8, R gy, and

R,.s. Where line OA is the length of the radius of

the load (Rgen), line OB is the length of the radius

of the curve (R¢f) and line AB is the difference

between Rgen and R,..f.

OMVayj

Figure 3. Relationship between P, Q, 6, R gen and
Rref .

The algorithm for testing the generator capability
curve is shown in Figure 4.
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Figure 4. Generator Capability Curve Testing Algorithm.

The GCC is limited by some constraints. The limit  power to the system is illustrated in Figure 5.
of the generator operating capability in sending
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Figure 5. Limitations on generator capability curve.

3. RESULTS AND DISCUSSION Current [A] 1312

To wvalidate the proposed method, the original Excitation voltage [V] 160

generator capability curve from the Lahendong IV Excitation current [A] 808

Geothermal Power Plant is used as a reference. The Phase 3

Lahendong IV plant is located in Minahasa, North  poyer factor 0,8

Sglawesi, Indor.lesia, and operates a generator gnit Frequency [Hz] 50

w1th. a  capacity Qf 20 MW. The techmcgl Number of Poles 2

%;;iizﬁfat10ns of this generator are presented in Speed [rpm] 3000

' Production year 2010
Table 1. Generator specification Producer Fuji Electric

Generator Name LH4
Type GTLRI494 /45 — 2 The simulated capability curve display with the
Output [MVA] 25 original PQ curve data of generatf)r in the
Output [MW] 20 Lghendong IV geothermal power plant is shown in
Voltage [kV] 11 Figure 6.
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Figure 6. The developed capability curve of a generator of NN training

The capability curve from the NN training results
already recognizes the target as the initial capability
curve which is the PQ curve data. This is proven
that the capability curve of the NN training results
(red line) similar to the PQ curve data target (blue
line). A trial of the capability curve of the NN
training results was carried out to obtain the work
point of the generator so that it could be determined
whether the generator worked at safe limits or not.
Generator work point is declared safe if it meets the
requirements of Rgen < Ryep. The testing of the
generator capability curve is carried out on several
loading conditions, namely by entering the P and Q
values as input to the capability curve of the results
of the NN training, as shown in Figure 7.
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Figure 7. The developed capability curve of a
generator of NN training.

To further validate the effectiveness of the proposed
method, another test case was performed using the
original generator capability curve from the

20 2

® Generator Work Point

L
by

Lahendong IV Geothermal Power Plant, with
operating data of operation P = 19.9 MW, Q =
2,236 MVAr as shown in Figure 8 is used to verify
the effectiveness of the method.
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Figure 8 Simulation results.

Refers to Figure 8, when the generator supplies a
load with P =19.9 MW, Q =2,236 MV Ar, resulting
in the generator working point. From the Figures 17
(a) and (b) show the location of the generator
working point (P, Q) from the original capability
curve of Lahendong IV geothermal power plant
generator and the simulation result capability curve
at the loading point (19.9 MW, 2,236 MV Ar) is the
same. At this loading condition the generator
operates in over-excitation conditions, that is, the
generator works in the lagging area or sends
reactive power to the system. The working point of
the generator is within the limits of the capability
curve, besides that the reactive power to the system
is quite small, namely 2,236 MVAr, resulting in a
large generator power factor value of 0.99 lagging
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which indicates that the generator is still in a normal
excitation condition. Therefore, in this condition
the generator works in safe conditions.

4. CONCLUSIONS

This study successfully developed a virtual
visualization system for generator capability curve
simulation, enabling effective representation of
generator operating conditions. The proposed
method demonstrated excellent accuracy, as the
generated capability curve closely matches the
original one. Although a simple neural network
(NN) model was employed, its performance proved
to be highly effective, providing clear visualization
of the generator’s operating point to ensure
operational safety. Moreover, the developed virtual
visualization model can simulate various potential
operating  scenarios, replicating  real-world
generator behavior under different conditions,
including special or extreme operating cases.
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