ANALISIS KEANDALAN PADA JARINGAN DISTRIBUSI PENYULANG OESAO, CAMPLONG DAN BURAEN

Tomi D. Dairo Bobo¹, Wellem F. Galla², Evtaleny R. Mauboy³

1,2,3 Jurusan Teknik Elektro, Fakultas Sains & Teknik, Universitas Nusa Cendana Email: wfridzg@yahoo.co.id

ABSTRACT

The distribution system reliability index is a measure of the system to continuously distribute electrical energy to the load within a certain period and under certain conditions on an ongoing basis. PT. PLN (Persero) Rayon Oesao, a provider of electricity services in Kupang Regency, has a service standard following SPLN 68-2: 1986 of 37.8 disturbances/year and 247.8 disturbance hours/year. This study analyzes the level of reliability of the distribution network of PT. PLN (Persero) Rayon Oesao in three (3) feeders, namely Oesao feeders, Camplong feeders, and Buraen feeders. The reliability index calculation is based on the estimated failure rate (λ) and the estimated duration of the disturbance (U) for each installed component. From the calculation, it can be concluded that the distribution channel of PT. PLN (Persero) Rayon Oesao is categorized as reliable according to SPLN 68-2: 1986 with the highest reliability index being the 2012 Oesao feeder, namely SAIFI = 0.68532 times / disturbance; SAIDI = 2.06852 hours / year; CAIFI = 0.331309 times / interruption; CAIDI = 3.018327 hours / year; ASAI = 0.999764 and ASUI = 0.000236. Meanwhile, the lowest in Buraen feeders in 2017 was SAIFI = 15,95456 times / disturbance; SAIDI = 47.92384 hours / year; CAIFI = 0.332915 times / interruption; CAIDI = 3.003771 hours / year; ASAI = 0.994529 and ASUI = 0.005471.

Keywords: Index, Feeder, Saidi, Saifi

ABSTRAK

Indeks keandalan sistem distribusi adalah tolak ukur dari sistem untuk terus menyalurkan energi listrik ke beban dalam periode waktu tertentu dan dalam kondisi tertentu secara berkelanjutan. PT. PLN (Persero) Rayon Oesao sebagai penyedia layanan listrik di Kabupaten Kupang memiliki standar pelayanan sesuai dengan SPLN 68-2:1986 sebesar 37,8 kali gangguan/tahun dan 247,8 jam gangguan/tahun.

Penelitian ini menganalisis tingkat keandalan jaringan distribusi PT. PLN (Persero) Rayon Oesao pada tiga (3) penyulang yaitu penyulang Oesao, penyulang Camplong dan penyulang Buraen. Perhitungan indeks keandalan didasarkan pada perkiraan laju kegagalan (λ) dan perkiraan durasi gangguan(U) tiap komponen terpasang.

Dari hasil perhitungan dapat disimpulkan bahwa saluran distribusi PT. PLN (Persero) Rayon Oesao dikategorikan andal sesuai dengan SPLN 68-2:1986 dengan indeks keandalan tertinggi adalah pada penyulang Oesao tahun 2012 yaitu SAIFI=0,68532 kali/gangguan; SAIDI=2,06852 jam/tahun; CAIFI=0,331309 kali/gangguan; CAIDI=3,018327 jam/tahun; ASAI=0,999764 dan ASUI=0,000236. Sedangkan yang terendah pada penyulang Buraen tahun 2017 sebesar SAIFI=15,95456 kali/gangguan; SAIDI=47,92384 jam/tahun; CAIFI=0,332915 kali/gangguan; CAIDI=3,003771 jam/tahun; ASAI=0,994529 dan ASUI=0,005471.

Kata Kunci: Indeks, Penyulang, Saidi, Saifi

1. PENDAHULUAN

Jaringan distribusi energi listrik merupakan komponen utama dalam sistem tenaga listrik yang berfungsi untuk menyalurkan energi listrik dari sumber pembangkitan ke beban oleh karena itu jaringan distribusi harus dapat memenuhi syarat andal agar dapat terus menyalurkan energi listrik dengan optimal. Keandalan suatu sistem distribusi adalah salah satu

tolak ukur untuk menentukan kinerja dari sistem tersebut [1]. Keandalan jaringan distribusi dapat dinilai dari sejauh mana sistem tersebut dapat menyuplai listrik ke beban secara berkelanjutan selama kurun waktu tertentu. Untuk dapat mengetahui tingkat keandalan suatu jaringan listrik maka, PT. PLN (Persero) sebagai penyedia jasa layanan energi listrik menggunakan indeks keandalan yang meliputi Sistem Average Interruption Frequency Index (SAIFI),

ISSN: 2252-6692

System Average Interruption Duration Index (SAIDI), Customer Average Interruption Frequency Index (CAIFI), Customer Average Interruption Duration Index (CAIDI), Average Service Availability Index (ASAI) dan Average Service Availability Index (ASUI) [2-4].

Untuk dapat memenuhi kebutuhan energi listrik masyarakat dengan baik PT. PLN (Persero) menetapkan suatu standar yang mengatur tentang "Tingkat Jaminan Sistem Tenaga Listrik" yang dimuat dalam SPLN 68-2:1986. Berdasarkan SPLN 68-2 :1986, nilai standar keandalan jaringan PLN Distribusi DKI & Tangerang menjadi dasar tingkat keandalan bagi wilayah lain di Indonesia dengan frekuensi pemadaman 27 kali/tahun dan durasi pemadaman 177 jam/tahun. Untuk daerah-daerah lain, maka nilai frekuensi dan durasi pada PLN DKI & Tangerang dikalikan dengan suatu nilai faktor pengali. Untuk wilayah Maluku, NTB dan NTT nilai faktor pengalinya adalah 1,4 sehingga standar jaminan layanan wilayah NTT adalah 37,8 kali/tahun dan 247,8 jam/tahun. Sedangkan wilayah kelistrikan di pedesaan dapat dikalikan dengan 1,6 sehingga standar keandalan untuk wilayah pedesaan adalah 43,2 kali/tahun dan 283,2 jam/tahun.

PT. PLN (Persero) Rayon Oesao merupakan salah satu Rayon dari PT. PLN (Persero) Indonesia yang bertugas untuk melayani energi listrik di wilayah Kabupaten Kupang dengan jumlah delapan (8) penyulang (*Feeder*) dengan sistem konfigurasi jaringan listrik *radial* dan memiliki dua (2) buah Gardu Induk (GI) yaitu GI Naibonat dan Gardu Hubung Oesao. Berdasarkan SPLN 68-2:1986 standar jaminan pelayanan PT. PLN (Persero) Rayon Oesao adalah 37,8 kali/tahun dan 247,8 jam/tahun.

2. METODE PENELITIAN

2.1 Sistem Distribusi

Sistem distribusi tenaga listrik adalah suatu sistem yang didesain dan dibangun untuk memasok daya listrik bagi sekelompok beban, dan hal tersebut merupakan suatu sistem yang cukup kompleks, dimulai dari instalasi sumber (source) sampai instalasi beban (load).

2.2 Keandalan Jaringan Distribusi

Keandalan suatu peralatan atau sistem secara umum dapat didefinisikan sebagai probabilitas suatu alat atau sistem untuk menyelenggarakan tujuannya secara cukup untuk periode waktu tertentu dan kondisi operasi tertentu [5].

PT. PLN (Persero) Indonesia sebagai perusahaan penyedia layanan listrik di Indonesia menetapkan suatu standar pelayan yang diatur dalam SPLN 59:1985 tentang proses perhitungan indeks keandalan pada tiap jaringan distribusi berdasarkan komponen terpasang serta jumlah pelanggan yang dilayani dan SPLN 68-2:1986 tentang standar keandalan jaringan distribusi di setiap daerah.

2.3 Metode Perhitungan

Metode-metode perhitungan yang digunakan adalah sebagai berikut:

a. Perkiraan laju kegagalan (λ)

Perkiraan laju kegagalan pada suatu titik (λ_i) dihitung menggunakan persamaan berikut ini:

$$\lambda = \Sigma X_i \cdot \lambda_i \cdot X_{out} \cdot \dots \cdot \dots \cdot (2.1)$$

Ket:

 X_i = Komponen pada terpasang pada titik i λ = Perkiraan laju kegagalan tiap komponen

 X_{out} = PU sistem keluar

b. Perkiraan durasi pemadaman (U)

Periode dari satu permulaan komponen keluar dari operasi sistem sampai saat komponen dapat dioperasikan kembali sesuai dengan fungsinya.

Perkiraan lama keluarnya komponen pada suatu titik (U_i) dihitung menggunakan persamaan berikut ini:

$$U_i=\Sigma \lambda_i.t_i....(2.2)$$

Ket:

 λ_i = Perkiraan laju kegagalan

 t_i = waktu perbaikan

c. System Average Interruption Frequency Index (SAIFI)

Dimana:

 λ_i = Perkiraan laju kegagalan pada titik *i* (kegagalan/tahun)

 N_i = jumlah pelanggan pada titik beban i (pelanggan) N= jumlah seluruh pelanggan dalam satu sistem (pelanggan)

d. System Average Interruption Duration Index (SAIDI)

Dimana:

 U_i = durasi gangguan pada titik i (%/tahun)

ISSN: 2252-6692

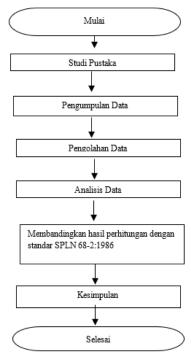
 N_i = jumlah pelanggan pada titik beban i (pelanggan) N= jumlah seluruh pelanggan dalam satu sistem (pelanggan)

e. Customer Average Interruption Frequency Index (CAIFI)

$$CAIFI = \frac{SAIFI}{SAIDI}$$

$$CAIFI = \frac{\sum \lambda_i . N_i}{\sum U_i . N} (2.5)$$

f. Customer Average Interruption Duration Index (CAIDI)


$$CAIDI = \frac{SAIDI}{SAIFI}$$

g. Average Service Availability/Unavailability Index (ASAI / ASUI)

$$ASAI = \frac{8760 - SAIDI}{8760} \dots (2.7)$$

 $ASUI = 1 - ASAI \dots (2.8)$

3. Metode Penelitian

Alur penelitian dijelaskan melalui gambar 3.1 di bawah ini.

Gambar 3.1 Langkah-langkah penelitian

3. HASIL DAN PEMBAHASAN

3.1. Jumlah komponen terpasang

Sebagai penyedia jasa layanan listrik di Kabupaten Kupang PT. PLN (Persero) Rayon Oesao memiliki 8 buah penyulang yaitu: Oesao, Camplong, Buraen, Pariti, Sulamu, Oemofa dan Baun. Berikut adalah komponen terpasang pada penyulang Oesao, Camplong dan Buraen sebagai penyulang yang menjadi objek penelitian:

Tabel 4. 1 Komponen terpasang

abel 4. 1 Komponen terpasang				
No	Penyulang	Komponen	Satuan	
		Saluran Udara	20,93 KMS	
		TM		
1	Oesao	Transformator	18 buah	
		Load Break	0	
		Switch		
		Cut Out	6 buah	
		Recloser	0	
		Rel TR	18 buah	
		Saluran Udara	94,80 KMS	
		TM		
2	Camplong	Transformator	79 buah	
		Load Break	2 buah	
		Switch		
		Cut Out	31 buah	
		Recloser	2 buah	
		Rel TR	79 buah	
		Saluran Udara	176, 25	
		TM	KMS	
		Transformator	70 buah	
3	Buraen	Load Break	3 buah	
		Switch		
		Cut Out	36 buah	
		Recloser	2 buah	
		Rel TR	70 buah	

Sumber: PT. PLN (Persero) Rayon Oesao

3.2. Jumlah Pelanggan

Berikut adalah data jumlah pelanggan PT. PLN (Persero) Rayon Oesao:

Tabel 4.2 Data Pelanggan PT. PLN Oesao

No	Nama Penyulang	Tahun	Pelanggan
1	Oesao		3543
2	Camplong		8340
3	Buraen	2012	9815
Total			21698
1	Oesao		3543
2	Camplong	2013	8340

Sumber: PT. PLN (Persero) Rayon Oesao

3	Buraen		9815
Total			21698
1	Oesao		3544
2	Camplong	2014	8341
3	Buraen		9818
Total			21703
1	Oesao		3544
2	Camplong	2015	8342
3	Buraen		9818
Total			21704
1	Oesao		3545
2	Camplong	2016	8343
3	Buraen		9820
Total			21708
1	Oesao		3545
2	Camplong	2017	8343
3	Buraen		9820
Total			21708

3.3. Perkiraan Laju Kegagalan (λ)

Berdasarkan data komponen yang terpasang diperoleh perkiraan laju kegagalan dengan menggunakan persamaan 2.1 dan ditampilkan dalam tabel 4.3

Tabel 4.3 Perkiraan laju kegagalan

Penyulang	Perkiraan laju	
	kegagalan	
Oesao	4,197	
Camplong	18.979	
Buraen	35,269	

Contoh perhitungan pada penyulang Oesao:

 $\lambda_i = \Sigma X i. \lambda. X out$

=(20,93x0,2x1)+(18x0,005x1/18)+(0x0,003x0)+(6x0,005x1/6)+(0x0,005x0)+18x0,001x1/18)

= 4,197 kali/tahun

3.4. Perkiraan Durasi Pemadaman (U_i)

Berdasarkan data komponen yang terpasang diperoleh perkiraan durasi gangguan pada tabel 4.4 dengan menggunakan persamaan 2.2.

Tabel 4.4 Perkiraan durasi pemadaman

Penyulang	Perkiraan laju	
	kegagalan	
Oesao	12,668	
Camplong	57,07	
Buraen	105,94	

 $U_i=\Sigma \lambda i$. Repair time

= (4,186x3) + (0,005x10) + (0x10) + (0,005x10) + (0x10) + (0,001x10)

= 12,668 Jam/tahun

3.5. Hasil Perhitungan SAIFI

Berikut adalah hasil perhitungan SAIFI pada PT. PLN (Persero) Rayon Oesao

Tabel 4.5 Hasil Perhitungan SAIFI

Tahun	Penyulang	SAIFI
2012	Oesao	0.68532
	Camplong	7.29491
	Buraen	15.95379
2013	Oesao	0.68532
	Camplong	7.29491
	Buraen	15.95379
2014	Oesao	0.68545
	Camplong	7.29511
	Buraen	15.95231
2015	Oesao	0.68532
	Camplong	7.29464
	Buraen	15.95425
2016	Oesao	0.68539
	Camplong	7.29417
	Buraen	15.95456
2017	Oesao	0.68539
	Camplong	7.29417
	Buraen	15.95456

Berdasarkan tabel hasil perhitungan diatas nilai SAIFI pada PT. PLN (Persero) Rayon Oesao tahun 2012 sampai 2017 kurang dari 37,8 kali/tahun. Nilai SAIFI tertinggi adalah pada Penyulang Oesao tahun 2012 dan yang terendah adalah pada Penyulang Buraen tahun 2017. Nilai SAIFI Penyulang Oesao tahun 2012 lebih tinggi dari pada penyulang lainnya disebabkan oleh panjang saluran, komponen yang terpasang dan

ISSN: 2252-6692

jumlah pelanggan Penyulang Oesao tahun 2012 lebih sedikit.

3.6. Hasil Perhitungan SAIDI

Berikut adalah hasil perhitungan SAIDI pada PT. PLN (Persero) Rayon Oesao

Tabel 4.6 Hasil Perhitungan SAIDI

Tahun	Penyulang	SAIDI
2012	Oesao	2.06852
	Camplong	21.93584
	Buraen	47.92152
2013	Oesao	2.06852
	Camplong	21.93584
	Buraen	47.92152
2014	Oesao	2.06891
	Camplong	21.93645
	Buraen	47.91710
2015	Oesao	2.06853
	Camplong	21.93503
	Buraen	47.92291
2016	Oesao	2.06873
	Camplong	21.93362
	Buraen	47.92384
2017	Oesao	2.06873
	Camplong	21.93362
	Buraen	47.92384

Berdasarkan grafik hasil perhitungan diatas nilai SAIDI pada PT. PLN (Persero) Rayon Oesao tahun 2012 sampai 2017 kurang dari 247,8 jam/tahun. Nilai SAIDI tertinggi adalah pada Penyulang Oesao tahun 2012 dan yang terendah adalah pada Penyulang Buraen tahun 2017. Nilai SAIDI Penyulang Oesao tahun 2012 lebih tinggi dari pada penyulang lainnya dikarenakan panjang saluran, komponen yang terpasang dan jumlah pelanggan Penyulang Oesao tahun 2012 lebih sedikit.

3.7. Hasil Perhitungan CAIFI

Berikut adalah hasil perhitungan CAIFI pada PT. PLN (Persero) Rayon Oesao:

Tabel 4.7 Hasil Perhitungan CAIFI

Tahun	Penyulang	CAIFI
2012	Oesao	0,331309
	Camplong	0,332557
	Buraen	0,332915
2013	Oesao	0,331309
	Camplong	0,332557
	Buraen	0,332915
2014	Oesao	0,33131
	Camplong	0,332557
	Buraen	0,332915
2015	Oesao	0,331308
	Camplong	0,332557
	Buraen	0,332915
2016	Oesao	0,33131
	Camplong	0,332557
	Buraen	0,332915
2017	Oesao	0,33131
	Camplong	0,332557
	Buraen	0,332915

3.8. Hasil Perhitungan CAIDI

Berikut adalah hasil perhitungan CAIDI pada PT. PLN (Persero) Rayon Oesao

Tabel 4.8 Hasil Perhitungan CAIDI

Tahun	Penyulang	CAIDI
2012	Oesao	3,018327
	Camplong	3,007006
	Buraen	3,00377
2013	Oesao	3,018327
	Camplong	
	Buraen	3,00377
2014	Oesao	3,018324

	Camplong	3,007007
	Buraen	3,003772
2015	Oesao	3,018324
	Camplong	3,007007
	Buraen	3,003771
2016	Oesao	3,018325
	Camplong	3,007007
	Buraen	3,003771
2017	Oesao	3,018325
	Camplong	3,007007
	Buraen	3,003771

3.9. Hasil Perhitungan ASAI/ASUI

Berikut adalah hasil perhitungan CAIDI pada PT. PLN (Persero) Rayon Oesao

Tabel 4.9 Hasil Perhitungan ASAI/ASUI

Tahun	Penyulang	ASAI	ASUI
2012	Oesao	0,999764	0,000236
	Camplong	0,997496	0,002504
	Buraen	0,99453	0,00547
2013	Oesao	0,999764	0,000236
	Camplong	0,997496	0,002504
	Buraen	0,99453	0,00547
2014	Oesao	0,999764	0,000236
	Camplong	0,997496	0,002504
	Buraen	0,99543	0,00547
2015	Oesao	0,999764	0,000236
	Camplong	0,997496	0,002504
	Buraen	0,994529	0,005471
2016	Oesao	0,999764	0,000236
	Camplong	0,997496	0,002504
	Buraen	0,994529	0,005471
2017	Oesao	0,999764	0,000236

Camplong	0,997496	0,002504
Buraen	0,994529	0,005471

Pada hasil penelitian nilai ketersediaan energi listrik atau ASAI yang tertinggi adalah pada penyulang Oesao tahun 2012 dan 2013 hal ini dikarenakan nilai SAIFI dan SAIDI pada penyulang Oesao tahun 2012 dan 2013 lebih tinggi dibanding dengan penyulang lainnya.

4. KESIMPULAN

Berdasarkan hasil perhitungan dan analisa di atas maka dapat disimpulkan sebagai berikut:

- 1. Penyulang Oesao, Camplong dan Buraen memenuhi kriteria andal karena indeks keandalan tiap penyulang kurang dari nilai frekuensi gangguan yang ditetapkan yaitu 37,8 kali/tahun dan durasi gangguan 247,8 jam. Tingkat keandalan tertinggi dari ketiga penyulang ini adalah pada penyulang Oesao tahun 2012 dengan nilai SAIFI = 0.68532 kali/tahun; SAIDI = 2.06852 jam/tahun; CAIFI = 0.331309 kali/tahun; CAIDI = 3.018327 jam/tahun; ASAI = 0.999764 dan ASUI = 0.000236 sedangkan yang terendah pada penyulang Buraen tahun 2017 dengan nilai SAIFI kali/tahun; SAIDI = 47.92384 = 15.95456 jam/tahun; CAIFI = 0.332915 kali/tahun; CAIDI = 3.003771 jam/tahun; ASAI = 0.994529 dan ASUI = 0.005471. Perbedaan ini dikarenakan jumlah pelanggan yang terus bertambah tiap tahunnya. Selain itu juga dikarenakan panjang saluran dan jumlah komponen pada penyulang Oesao lebih kecil dibandingkan penyulang Buraen.
- 2. Indeks keandalan suatu jaringan distribusi sangat dipengaruhi oleh panjang saluran, jumlah komponen terpasang dan banyak pelanggan. Semakin panjang suatu saluran distribusi dengan semakin banyak komponen yang terpasang, maka nilai indeks keandalan akan semakin kecil. Demikian juga dengan semakin banyak jumlah pelanggan maka semakin kecil indeks keandalan.

DAFTAR PUSTAKA

[1] Khairuly Syafrin, "Analisis Keandalan Sistem Jaringan Distribusi 20 kV PT. PLN (Persero) Rayon Panam Pada Feeder OGF 18 Taman Karya dan Feeder 12 Kualu Dengan Metode Loop Restoration Scheme (LRS)," *Skripsi Teknik Elektro*, Universitas Islam Negeri Sultan Syarif Kasim Riau, 2016.

- [2] Achmad Fatoni, Rony Seto Wibowo, Adi Soeprijanto, "Analisa Keandalan Sistem Distribusi 20 kV PT. PLN Rayon Lumajang dengan Metode FMEA (Failure Modes and Effects Analysis)", *Jurnal Teknik ITS*, vol. 5, No. 2, Surabaya, 2016.
- [3] Erhaneli, "Evaluasi Keandalan Sistem Distribusi Tenaga Listrik Berdasarkan Indeks Keandalan SAIDI dan SAIFI pada PT. PLN (Persero) Rayon Bagan Batu Tahun 2015", *Jurnal Teknik Elektro*, Institut Teknologi Padang. Vol. 5, No. 2, 2016.
- [4] Rahmad Santoso, Nurhalim, "Evaluasi Tingkat Keandalan Jaringan Distribusi 20 kV pada Gardu Induk Bangkinang dengan Menggunakan Metode FMEA (Failure Modes and Effects Analysis)", *Jurnal Teknik Elektro*, Universitas Riau. Vol. 3, No.2, 2016.
- [5] Willis, H Lee, "Power Distribution Planning Reference Book. Second Edition, Revised and Expanded", Marcel Dekker, Inc: New York-Basel, 2004.