DESIGN OF PROTOTYPE DYNAMIC AC POWER MACHINE WITH EQUIVALENT CIRCUIT MODELING (TORQUE SPEED CURVE OF INDUCTION MOTOR 1,1, KW)

Zainal Abidin, Adam
Politeknik Negeri Bengkalis, Jurusan Teknik Elektro, Jln Bathin Alam Sei Alam Bengkalis
Email: zainal@polbeng.ac.id atau zainal.eepolbeng@gmail.com

Abstract

Squirrel cage induction motors are widely used in electric motor drives due to their satisfactory mechanical characteristics (torque, current, overloading) and small dimensions, as well as their low price. When starting an induction motor, a large current is required for magnetizing its core, which results in a low power factor, rotor power losses and a temperature rise in the windings. None of these parameters should reach values beyond certain limits until the motor reaches nominal speed.

The speed of an induction motor 1,1kW is affected very little by fluctuations of voltage. The greater the supply voltage of the motor, the induction motor’s speed will increase. The torque values (T_{start}, T_{max} and T_{max}) are affected by the value of the motor supply voltage: (V_{p-nl}: 132.8, T_{start} : 7.4, T_{S-max1} : 0.4, T_{max} : 9.9) V, (V_{p-nl}: 127.0, T_{start2} : 4.8, T_{S-max1} : 0.3, T_{max} : 8.4) V and (V_{p-nl} : 121.3, T_{start3} : 3.3, T_{S-max2} : 0.2, T_{max} : 7.1) V. Stator current (I_{st-nl} : 2.5, 2.2, 1.9) Amp rises gradually on account of the increase in magnetising current (I_{m} : 2.5, 2.2, 1.9) Amp. The magnetising current required to produce the stator flux. The component of the stator current which provides the ampere

Keywords: induction motor, torque, rotor, stator

1. Parameter Induction Motor Tests

No-Load Test, Current (I_{nl}), voltage (V_{nl}) and power (P_{nl}) are measured at the motor input. The losses in the no-load test are those due to core losses, winding losses, wind age and friction. The slip of the induction motor at no-load is very low. in the rotor branch of the equivalent circuit is very high. The no-load rotor current is then negligible and the rotor branch of the equivalent circuit can be neglected. The approximate equivalent circuit for the no-load test becomes.

Fig 1. Induction machine equivalent circuit for no-load test

The series resistance in the no-load test equivalent circuit is not simply the stator winding resistance. The no-load rotational losses (windage, friction, and core losses) will also be seen in the no-load measurement. This is why the additional measurement of the DC resistance of the stator windings is required. Given that the rotor current is negligible under no-load conditions, the rotor copper losses are also negligible. Thus, the input power measured in the no-load test is equal to the stator copper losses plus the rotational losses,

\[P_{rot} = P_{nl} - P_{cl} \]

where the stator copper losses are given by

\[P_{cl} = 3 I_{nl}^2 R_1 \]

The ratio of the no-load voltage to current represents the no-load impedance which, from the no-load equivalent circuit, is

\[Z_{nl} = \frac{V_{p-nl}}{I_{st-nl}} \]

and the blocked rotor reactance sum \(X_1 + X_m \) is

\[Z_{nl} = X_1 + X_m \]

Blocked Rotor Test, Current (I_{br}), voltage (V_{br}) and power (P_{br}) are measured at the motor input. The resulting equivalent circuit for the blocked rotor test is shown in the figure below.

Fig 2. Induction machine equivalent circuit for blocked rotor test

The slip for the blocked rotor test is unity since the rotor is stationary. The reflected rotor winding resistance is determined from the dissipated power in the blocked rotor test.

\[R_2 = \frac{(P_{br} - 3x I_{br}^2 x R_1)}{3x I_{br}^2} \]

The Reactance rotor is:
\[X_2 = \sqrt{(Z_{komp,br}^2 - (R_1 + R_2)^2) - X_1} \]

The power factor is:
\[P_{F_{br}} = \frac{P_{br}}{\sqrt{3} \times V_{Lr} \times I_{Lbr}} \]

The reactance equivalent is:
\[R_{ekv_{br}} = Z_{ekv_{br}} \times P \]

The thevenin impedance is:
\[Z_{th} = R_{th} + jX_{th} \]

The equivalent impedance is:
\[Z_{ekv_{br}} = \frac{V_{p_{br}}}{I_{L_{br}}} \]

2. Induction Machine Power

In order to simplify the determination of torque and power equations from the induction machine equivalent circuit, replace the network to the left of the reflected components by a Thevenin equivalent source.

The Thevenin voltage (open-circuit voltage) for the stator portion of the equivalent circuit is:
\[V_{th} = \left(\frac{X_m}{(X_1 + X_m)} \right) x V_p \]

The thevenin resistance is:
\[R_{th} = \left(\frac{X_m}{(X_1 + X_m)} \right)^2 \times R_1 \]

The thevenin reactance is:
\[X_{th} = X_1 \]

The thevenin impedance:
\[Z_{th} = R_{th} + jX_{th} \]

Inserting the Thevenin equivalent source into the induction machine equivalent circuit yields the following equivalent circuit.

From the equivalent circuit, the total real power per phase that crosses the air gap (the air gap power = \(P_{air\ gap} \)) and is delivered to the rotor is:
\[P_{air\ gap} = I_2^2 \left(R_2 + \frac{R_2^2}{S} \right) (1 - s) = I_2^2 \frac{R_2}{S} \]

The portion of the air gap power that is dissipated in the form of ohmic loss (copper loss) in the rotor conductors is:
\[P_{ohmic} = I_2^2 R_2 \]

The total mechanical power (\(P_{mech} \)) developed internal to the motor is equal to the air gap power minus the ohmic losses in the rotor which gives
\[P_{mech} = P_{air\ gap} - P_{ohmic} \]

The air gap power is:
\[P_{air\ gap} = \omega_2 T_{max} \]

The induction machine is an efficient machine when operating at a low value of slip. Conversely, the induction machine is a very inefficient machine when operating at a high value of slip. The overall mechanical power is equal to the power delivered to the shaft of the machine plus losses (windage, friction). The mechanical power (\(P_{mech} \)) is equal to torque (N-m) times angular velocity (rad/s).

3. Induction Machine Torque

The torque is therefore inversely proportional to the slip for large values of slip. Between \(s = 0 \) and \(s = 1 \), a maximum value of torque is obtained. The maximum value of torque with respect to slip can be obtained by differentiating the torque equation with respect to \(s \) and setting the derivative equal to zero. The resulting maximum torque (called the breakdown torque) is:
\[T_{max} = \frac{2 \omega_s \left(R_{th} + \sqrt{(R_{th}^2 + (X_{th} + X_2)^2)} \right)}{3 V_{th}^2} \]

The slip at this maximum torque is:
\[T_{s_{max}} = \frac{R_2}{\sqrt{(R_{th})^2 + (X_{th} + X_2)^2}} \]

And the starting torque is:
\[T_{start} = \frac{3 V_{th}^2 R_2}{\left(\omega_s ((R_{th} + R_2)^2 + (X_{th} + X_2)^2) \right)} \]

4. Induction machine efficiency

The efficiency (\(\eta \)) of an induction machine is the ratio of the output power (\(P_{out} \)) to the input power (\(P_{in} \)).
\[\eta = \frac{P_{out}}{P_{in}} \times 100 \]

Where:

- The input power (\(P_{in} \))
\[P_{in} = 3 V_1 I_1 \cos(\theta_v - \theta_r) \]

And

- The output power (\(P_{out} \))
\[P_{out} = P_{mech} - P_{rot} \]

5. Research Methodology
Testing Locations:
Laboratory of electrical machine and electrical system of
electrical engineering department floor 2

Motor specifications:
The three-phase induction motor, Class B, squirrel-cage
induction motor. The three-phase stator windings are
Δ/Y-connected, 220/380V, 4,3/2,5A, 1,1 kW, 0,67,
1475 r/60, 50Hz

Table 1. No-load tests motor 1,1 KW

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_L,asl (V)</td>
<td>230</td>
<td>220</td>
<td>210</td>
</tr>
<tr>
<td>I_L,asl (A)</td>
<td>2,5</td>
<td>2,2</td>
<td>1,9</td>
</tr>
<tr>
<td>P_L,asl (W)</td>
<td>106</td>
<td>101</td>
<td>97</td>
</tr>
</tbody>
</table>

Table 2. Blocked rotor tests motor 1,1 Kw

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Blocked Rotor test</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_L,br (V)</td>
<td>Test 1</td>
</tr>
<tr>
<td></td>
<td>64</td>
</tr>
</tbody>
</table>

Rotor resistance (R_I) : 3.5 Ω
Synchronous speed:
N_s = \frac{120f}{p} = 1500 rpm

The equivalent circuit for the induction motor is shown
below:

![Equivalent Circuit of Induction Motor](image1)

![Fig 3. Design of Prototype Dynamic AC Power Machine](image2)

![Fig 4. The equivalent circuit of induction motor](image3)

Table 3. Parameters of induction motor 1,1 KW

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance stator</td>
<td>R_1 : 3.5 Ω</td>
</tr>
<tr>
<td>Reactance stator</td>
<td>X_1 : 57.74 Ω</td>
</tr>
<tr>
<td>Resistance rotor</td>
<td>R_2 : 8.43 Ω</td>
</tr>
<tr>
<td>Reactance rotor</td>
<td>X_2 : 8.29 Ω</td>
</tr>
<tr>
<td>Magnetising reactance</td>
<td>X_m : 49.89 Ω</td>
</tr>
<tr>
<td>Stator copper losses</td>
<td>P_{cl} : 65.63 W</td>
</tr>
<tr>
<td>Rotational losses</td>
<td>P_{rot} : 40.37 W</td>
</tr>
</tbody>
</table>

The three-phase induction motor, Class B, squirrel-cage
induction motor. The three-phase stator windings are
Δ/Y-connected, 220/380V, 4,3/2,5A, 1,1 kW, 0,67,
1475 r/60, 50Hz

Table 4. The results calculation tests 1, 2 and tests 3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-load test (nl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_p,asl</td>
<td>132.8</td>
<td>127.1</td>
<td>121.3</td>
<td>V</td>
</tr>
<tr>
<td>Z_sl</td>
<td>53.12</td>
<td>57.74</td>
<td>63.8</td>
<td>Ω</td>
</tr>
<tr>
<td>P_cel</td>
<td>65.63</td>
<td>50.82</td>
<td>37.9</td>
<td>W</td>
</tr>
<tr>
<td>P_{tot}</td>
<td>40.37</td>
<td>50.18</td>
<td>59.1</td>
<td>W</td>
</tr>
<tr>
<td>PF_{ed}</td>
<td>0.1064</td>
<td>0.1205</td>
<td>0.1404</td>
<td></td>
</tr>
<tr>
<td>\theta_{al}</td>
<td>53.12</td>
<td>57.74</td>
<td>63.8</td>
<td>A</td>
</tr>
<tr>
<td>V_m</td>
<td>124.04</td>
<td>119.32</td>
<td>114.6</td>
<td>V</td>
</tr>
<tr>
<td>I_m</td>
<td>2.5</td>
<td>2.2</td>
<td>1.9</td>
<td>A</td>
</tr>
<tr>
<td>X_mm</td>
<td>49.9</td>
<td>54.6</td>
<td>60.9</td>
<td>Ω</td>
</tr>
<tr>
<td>X_{sc}</td>
<td>3.2</td>
<td>3.1</td>
<td>2.9</td>
<td>Ω</td>
</tr>
</tbody>
</table>

Blocked rotor test (br)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_p-br</td>
<td>36.9</td>
<td>41.6</td>
<td>47.9</td>
<td>V</td>
</tr>
<tr>
<td>R_b</td>
<td>4.8</td>
<td>3.8</td>
<td>3.3</td>
<td>Ω</td>
</tr>
<tr>
<td>Zekv-br</td>
<td>14.2</td>
<td>14.9</td>
<td>15.9</td>
<td>Ω</td>
</tr>
<tr>
<td>PF_br</td>
<td>0.5864</td>
<td>0.4897</td>
<td>0.4243</td>
<td></td>
</tr>
<tr>
<td>\theta_{br}</td>
<td>54.100</td>
<td>60.680</td>
<td>64.890</td>
<td>A</td>
</tr>
<tr>
<td>Rekv-br</td>
<td>8.3</td>
<td>7.3</td>
<td>6.9</td>
<td>Ω</td>
</tr>
<tr>
<td>Xekv-br</td>
<td>11.5</td>
<td>12.9</td>
<td>14.5</td>
<td>Ω</td>
</tr>
<tr>
<td>X_{sc}</td>
<td>8.3</td>
<td>9.8</td>
<td>11.6</td>
<td>Ω</td>
</tr>
</tbody>
</table>

Thevenin calculation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_th</td>
<td>124.6</td>
<td>120.2</td>
<td>115.7</td>
<td>V</td>
</tr>
<tr>
<td>R_th</td>
<td>3.1</td>
<td>3.1</td>
<td>3.2</td>
<td>Ω</td>
</tr>
<tr>
<td>X_th</td>
<td>3.2</td>
<td>3.1</td>
<td>2.9</td>
<td>Ω</td>
</tr>
</tbody>
</table>

Torque Calculation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{star}</td>
<td>7.4</td>
<td>4.8</td>
<td>3.3</td>
<td>N.m</td>
</tr>
<tr>
<td>T_{S-max}</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>T_{max}</td>
<td>9.9</td>
<td>8.4</td>
<td>7.1</td>
<td>N.m</td>
</tr>
</tbody>
</table>

Efficiency Calculation

<table>
<thead>
<tr>
<th>SI</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>83</td>
</tr>
</tbody>
</table>
6. **Torque Speed Curve Of Induction Motor**

Fig. 5. Torque Speed Curve Test 1
Starting torque \(T_{\text{start1}} \) : 7.36 N.m
Slip for maximum torque \(T_{\text{max1}} \): 0.41
Maximum torque \(T_{\text{max1}} \): 9.91 N.m
Synchronous speed : 1500 rpm
Phase voltage \(V_{\text{p-al}} \): 132.79V

Fig. 6. Torque Speed Curve Test 2
Starting torque \(T_{\text{start2}} \) : 4.83 N.m
Slip for maximum torque \(T_{\text{max2}} \): 0.28
Maximum torque \(T_{\text{max2}} \): 8.39 N.m
Synchronous speed : 1500 rpm
Phase voltage \(V_{\text{p-al}} \): 127.02V

Fig. 7. Torque Speed Curve Test 3
Starting torque \(T_{\text{start3}} \) : 3.34 N.m
Slip for maximum torque \(T_{\text{max3}} \): 0.22

Maximum torque \(T_{\text{max1}} \): 7.11 N.m
Synchronous speed : 1500 rpm
Phase voltage \(V_{\text{p-al}} \): 121.25V

7. **Conclusions**

a. The speed of an induction motor is affected very little by fluctuations of voltage (see Fig 5, 6, 7 and 8)
b. The torque values \(T_{\text{start}}, T_{\text{max}} \) and \(T_{\text{max}} \) are affected by the value of the motor supply voltage:
 \(V_{\text{p-al}} \): 132.8, 127.0, 121.3 V
 \(T_{\text{start}}, T_{\text{start2}}, T_{\text{start3}} \) : 7.4, 4.8, 3.3 N.m
 \(T_{\text{max1}}, T_{\text{max2}}, T_{\text{max3}} \): 0.4, 0.3, 0.2
 \(T_{\text{max1}}, T_{\text{max2}}, T_{\text{max3}} \): 9.9, 8.4, 7.1 N.m

c. The stator current \(I_{\text{st-1}}, 2.5, 2.2, 1.9 \) rises gradually on account of the increase in magnetising current \(I_{\text{m}} \)
d. The magnetising component of the stator current becomes larger as the voltage increase. There is a continuous increase in the power factor angle \(\theta_{\text{m}} \)

e. The stator current \(I_{\text{st}} \) will increase in proportion to the rotor current \(I_{\text{r}} \).

References

