Main Article Content

Novi Penna
Sebastianus Adi Santoso Mola
Meiton Boru


N-Queen problem is a problem which a N-Queen pawn in is place chess with n x n size. N-Queen pawn is a put in such away in chess board with under condition that the queen pawns do not attack each other. The attacking movement of N-Queen problem is similar to the way of the queen pawn attacking in chess. Commonly the queen pawn moves horizontally to left and right, forward and backward vertically and also diagonally, so there are no queen pawns in a line of horizontal, vertical and diagonal.
Heuristical searching is one of the method which can be used to solve the game of N-Queen problem selectively, by giving solution of the shortest time channel efficiently in order to able the user to solve this game well, fast and relevantly. Some algorithms that use heuristic is Iterative Deepening algorithm A* (IDA*) and Branch and Bound (B&B) algorithm. The used heuristic function is by seeing the numbers of boxes which are empty and the number of queen which is not be put in board yet.
The aim of making this final project to implement the solving of N-Queen problem using heuristic searching (B&B and IDA*). From this implementation could be seen that IDA* and B&B algorithm is able to give channel in solving N- Queen problem. After a repetition of test by using 19 sheet of data, it is shown the comparison of result between IDA* algorithm and B&B algorithm which IDA* algorithm result the shorter channel in solving N-Queen problem based on the node 61%, and time 41% which better than B&B algorithm.


Download data is not yet available.

Article Details

How to Cite
Penna, N., Mola, S., & Boru, M. (2018). PENERAPAN METODE HEURISTIK (ALGORITMA IDA* DAN B&B) DALAM PEMECAHAN N-Queen Problem. Jurnal Komputer Dan Informatika, 6(1), 37-44.


[1] Penna, Novi. 2015. Pemecahan N-Queen problem menggunakan metode heuristic search/informed search ( Algoritma Branch and Bound dan Algoritma Iterative Depeening Search ). Kupang.
[2] Anwar, Muhammad Nasrul. 2010. 8 Puzzle dengan menggunakan algoritma Iterative Deepening Search (IDS),, diakses tanggal 12 Desember 2013.
[3] Booch, Grady. 1999. Visual Modeling With Rational Rose 2000 and UML. Addison-Wesley. New Jersey.
[4] Jogiyanto. 1999. Analisis dan Desain Sisem Informasi. Andi Offset. Yogyakarta.
[5] Kadir, Abdul. 2003. Pengenalan Sistem Informasi. Andi Offset. Yogyakarta.
[6] Kusumadewi, Sri. 2003. Artificial Intelegent. Graha Ilmu. Yogyakarta.
[7] Kusumadewi, Sri. 2007. Kecerdasan Buatan (Teknik dan Aplikasinya). Graha Ilmu. Yogyakarta.
[8] Munir, Rinaldi. 2004. Algoritma Branch and Bound. Bahan Kuliah ke-11 IF2251 Strategi Algoritmik., diakses tanggal 02 Februari 2014.
[9] Pertiwi, Nursyamsiah. dkk. 2006. Penerapan Algoritma BFS, DFS, DLS dan IDS Dalam Pencarian Solusi Water Jug Problem,,+dfs,,dfs+dan+ids+dalam+pencarian+solusi+water+jug+problem&spell=1, diakses tanggal 02 Februari 2014.
[10] Rumbaugh, James, dkk. 1999. The Unified Modeling Languange Reference Manual. Addison-Wesley. New Jersey.
[11] Setiawan, Christian Yulius. 2008. Implementasi Metode Algoritma IDA* untuk Pencarian Jalur Terpendek Dengan Studi Kasus Yellow Pages Kota Bandung Menggunakan Teknologi WAP. Bandung.
[12] Suyanto. 2011. Artificial Intelligence. Bandung. Informatika.
[13] Tandoe, Arie. 2012. Penerapan Pohon dengan Algoritma Branch and Bound Dalam Menyelesaikan N-Queen Problem, Makalah IF2091 Struktur Diskrit–SemI Tahun 2011/2012., diakses tanggal 05 Februari 2014.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.