LOCAL IRREGULARITY POINT COLORING ON THE RESULT OF SUBDIVISION OPERATION OF HELM GRAPHS

  • Ilmiatun Nuroeni(1)
    Universitas Jember
  • Arika Indah Kristiana(2*)
    University of Jember
  • Saddam Hussen(3)
    Universitas Jember
  • Susi Setiawani(4)
    Universitas Jember
  • Robiatul Adawiyah(5)
    Universitas Jember
  • (*) Corresponding Author
Keywords: Vertex coloring, Local irregularity, Subdivision, Helm graph

Abstract

 One of the sub-chapters studied in graphs is local irregularity vertex coloring of graph. The based on definition of local irregularity vertex coloring of graph, as follow : (i)l : V (G) →{1, 2, 3, . . . , k} as a vertex irregular labeling and w : V (G) → N, for every uv ∈ E(G), w(u) ̸=w(v) with w(u) = Pv∈N(u)l(v) and (i) Opt(l) = min{max(li); li is a vertex irregular labeling}. The chromatic number of the local irregularity vertex coloring of G denoted by χlis(G), is the minimum cardinality of the largest label over all such local irregularity vertex colorings. In this article, discuss about local irregularity vertex coloring of subdivision by helm graph (Sg(Hn)).

Downloads

Download data is not yet available.

PlumX Metrics

Published
2023-10-20
How to Cite
1.
Nuroeni I, Kristiana A, Hussen S, Setiawani S, Adawiyah R. LOCAL IRREGULARITY POINT COLORING ON THE RESULT OF SUBDIVISION OPERATION OF HELM GRAPHS. JD [Internet]. 20Oct.2023 [cited 16Dec.2024];5(2):117-25. Available from: https://ejurnal.undana.ac.id/index.php/JD/article/view/12197
Section
Articles