Dimensi k-Metrik Pada Graf Parasut Diperumum

  • Deddy Rahmadi(1*)
    Universitas Islam Negeri Sunan Kalijaga Yogyakarta
  • Yeni Susanti(2)
    Universitas Gadjah Mada
  • (*) Corresponding Author

Abstract

Given a simple and connected graph $G=(V(G), E(G))$ and positive integer $k$. Set $S \subseteq V(G)$ is $k$-metric generator if for every pairs of distinct vertices $u,v \in V(G)$, there exists at least $k$ vertices $w_{1}, w_{2}, \ldots, w_{k} \in S$ such that $d(u,w_{i}) \neq d(v,w_{i})$ for every $i \in \{1,2,\ldots, k\}$, with $d(u,v)$ is length of shortest path form $u$ ke $v$. The $k$-metric generator with minimum cardinality is called $k$-metric bases, and the cardinalty is $k$-metric dimension of $G$denoted by $dim_{k}(G)$. This research will discuss the $k$-metric dimension of generalized parachute graphs.

Downloads

Download data is not yet available.

PlumX Metrics

Published
2024-11-01
How to Cite
1.
Rahmadi D, Susanti Y. Dimensi k-Metrik Pada Graf Parasut Diperumum. JD [Internet]. 1Nov.2024 [cited 15Nov.2024];6(2):179-87. Available from: https://ejurnal.undana.ac.id/index.php/JD/article/view/17178
Section
Articles