ANALISIS GARIS ALIRAN (STREAMLINE) PADA TURBIN ANGIN SUMBU HORIZONTAL TIPE PROPELER TIGA BLADE ROTOR GANDA DENGAN METODE CFD (COMPULATIONAL FLUID DYNAMICS)
Abstract
Tujuan penelitian ini adalah untuk mengetahui pola garis aliran fluida melewati rotor turbin angin sumbu horisontal atau horizontal axis wind turbine (HAWT) tipe propeler tiga blade rotor ganda kontra rotasi (double rotor counter-rotation) melalui metode computational fluid dynamics (CFD). Hasil simulasi CFD rotor turbin CRWT dengan penurunan skala geometri menunjukkan turbin cenderung beroperasi pada TSR rendah. Rotor depan turbin CRWT cenderung beroperasi dengan koefisien daya dan TSR yang lebih tinggi dari rotor belakang. Garis aliran (streamline) pada bidang horizontal arah aksial CRWT mengkonfirmasi pengaruhnya terutama aliran di sekitar permukaan blade terhadap performa CRWT. Garis aliran pada permukaan blade rotor depan dan rotor belakang pada turbin CRWT terhadap penurunan skala geometeri (FC = 0,25 dan 0,26 serta 0,3), dimana turbin beroperasi di TSR rendah sangat berbeda dari CRWT pada skala penuh (FC=1,0). Karena CRWT dengan penurunan factor skala geometri rotor yang membuat turbin beroperasi pada TSR rendah ini menyebabkan terjadinya separasi dan vortex di sekitar permukaan blade yang sangat kuat sehingga terjadi peningkatan gaya hambat dan penurunan gaya angkat. Peningkatan gaya hambat pada blade dapat menyebabkan penurunan torsi yang dibangkitkan oleh rotor turbin yang akibatnya menurunkan daya turbin.
Downloads
References
Eggleston, D. M., & Stoddard, F. (1987). Wind turbine engineering design.
Fluent, A. (2008). 12.0 Documentation 2009. Theory Guide.
Jung, S. N., No, T.-S., & Ryu, K.-W. (2005). Aerodynamic performance prediction of a 30 kW counter-rotating wind turbine system. Renewable Energy, 30(5), 631–644.
Kanemoto, T., & Galal, A. M. (2006). Development of intelligent wind turbine generator with tandem wind rotors and double rotational armatures (1st report, superior operation of tandem wind rotors). JSME International Journal Series B Fluids and Thermal Engineering, 49(2), 450–457.
Koehuan A., V., Sugiyono, & Kamal, S. (2019). Numerical Analysis on Aerodynamic Performance of Counter-rotating Wind Turbine through Rear Rotor Configuration. Modern Applied Science, 13(2), 140–257.
Koehuan, V. A., Sugiyono, & Kamal, S. (2017). Investigation of Counter-Rotating Wind Turbine Performance using Computational Fluid Dynamics Simulation. IOP Conference Series: Materials Science and Engineering, 267(1), 12034.
Koehuan, Verdy A, & Mandala, J. F. (2020). Simulasi CFD Performa Aerodinamika Rotor Turbin Angin Counter-Rotating melalui Variasi Rasio Kecepatan Tip Blade dengan Solidity Konstan. LONTAR Jurnal Teknik Mesin Undana (LJTMU ), 7(02), 1–14. https://doi.org/10.1234/ljtmu.v9i02.3342
Koehuan, Verdy Ariyanto, Nogur, L., & Jasron, J. U. (2014). Studi Eksperimental Variasi Sudut Blade terhadap Kinerja Rotor Blade Turbin Angin Tipe Propeler Poros Horizontal Model Contra Rotating. LONTAR Jurnal Teknik Mesin Undana (LJTMU), 1(2), 72–81.
Krogstad, P.-Å., & Eriksen, P. E. (2013). “Blind test” calculations of the performance and wake development for a model wind turbine. Renewable Energy, 50, 325–333.
Kumar, P. S., Abraham, A., Bensingh, R. J., & Ilangovan, S. (2013). Computational and experimental analysis of a counter-rotating wind turbine system.
Kumar, P. S., Bensingh, R. J., & Abraham, A. (2012). Computational analysis of 30 Kw contra rotor wind turbine. ISRN Renewable Energy, 2012.
Lee, S., Kim, H., & Lee, S. (2010). Analysis of aerodynamic characteristics on a counter-rotating wind turbine. Current Applied Physics, 10(2 SUPPL.), S339–S342. https://doi.org/10.1016/j.cap.2009.11.073
MAULANA, A. (2019). STUDI EKSPERIMENTAL PERFORMA COUNTER ROTATING WIND TURBINE BERDIAMETER 3 M. Universitas Gadjah Mada.
Mo, J. O., & Lee, Y. H. (2012). CFD Investigation on the aerodynamic characteristics of a small-sized wind turbine of NREL PHASE VI operating with a stall-regulated method. Journal of Mechanical Science and Technology, 26(1), 81–92. https://doi.org/10.1007/s12206-011-1014-7
Oggiano, L. (2014). CFD simulations on the NTNU wind turbine rotor and comparison with experiments. Energy Procedia, 58, 111–116.
Sanderse, B. (2009). Aerodynamics of wind turbine wakes. Energy Research Center of the Netherlands (ECN), ECN-E–09-016, Petten, The Netherlands, Tech. Rep, 5(15), 153.
Ushiyama, I., Shimota, T., & Miura, Y. (1996). An experimental study of the two-staged wind turbines. Renewable Energy, 9(1–4), 909–912. https://www.sciencedirect.com/science/article/pii/0960148196884278
Vermeer, L. J., Sørensen, J. N., & Crespo, A. (2003). Wind turbine wake aerodynamics. Progress in Aerospace Sciences, 39, 467–510. https://www.sciencedirect.com/science/article/pii/S0376042103000782
Yulistiyanto, B. (2009). Vorticity Fields on Flow with Vortex System. 16(2), 83–94.
Copyright (c) 2023 LONTAR Jurnal Teknik Mesin Undana (LJTMU )
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.