Simulasi CFD (Compulational Fluid Dynamics) Turbin Angin Sumbu Horizontal Tipe Propeler Tiga Blade Rotor Ganda Melalui Variasi Geometri

  • Verdy A. Koehuan(1*)
    Program Studi Teknik Mesin, Fakultas Sains dan Teknik Universitas Nusa Cendana
  • Roybertho Agustinus Hale(2)
    Universitas Nusa Cendana
  • Daud P. Mangesa(3)
    Program Studi Teknik Mesin, Fakultas Sains dan Teknik Universitas Nusa Cendana
  • (*) Corresponding Author

Abstract

Tujuan penelitian ini adalah untuk mengetahui performa turbin angin sumbu horisontal atau horizontal axis wind turbine (HAWT) tipe propeler tiga blade rotor ganda kontra rotasi (double rotor counter-rotation) terhadap variasi geometri rotor CRWT menggunakan metode computational fluid dynamics (CFD). Hasil simulasi CFD rotor turbin CRWT dengan penurunan skala geometri menunjukkan turbin cenderung beroperasi pada TSR rendah. Rotor depan turbin CRWT cenderung beroperasi dengan koefisien daya dan TSR yang lebih tinggi dari rotor belakang. Vektor kecepatan aliran pada bidang vertikal arah aksial CRWT juga dikonfirmasi oleh hasil analisis kontur kecepatan aliran dan kontur turbulent kinetic energy terhadap penurunan performa CRWT karena adanya penurunan faktor skala geometri rotor turbin. Vektor kecepatan pada tip blade antara rotor depan dan rotor belakang pada turbin CRWT dengan penurunan skala geometeri (FC = 0,25 dan 0,26 serta 0,3) yang beroperasi di TSR rendah yang arahnya cenderung menguat menuju ke tip blade dengan besaran vektor yang makin kuat di sisi hisap (suction surface) blade rotor belakang. Besaran vektor ini semakin kuat ini dapat membentuk vorteks yang menurunkan performa CRWT.

Downloads

Download data is not yet available.

References

Eggleston, D. M., & Stoddard, F. (1987). Wind turbine engineering design.

Fluent, A. (2008). 12.0 Documentation 2009. Theory Guide.

Jung, S. N., No, T.-S., & Ryu, K.-W. (2005). Aerodynamic performance prediction of a 30 kW counter-rotating wind turbine system. Renewable Energy, 30(5), 631–644.

Kanemoto, T., & Galal, A. M. (2006). Development of intelligent wind turbine generator with tandem wind rotors and double rotational armatures (1st report, superior operation of tandem wind rotors). JSME International Journal Series B Fluids and Thermal Engineering, 49(2), 450–457.

Koehuan A., V., Sugiyono, & Kamal, S. (2019). Numerical Analysis on Aerodynamic Performance of Counter-rotating Wind Turbine through Rear Rotor Configuration. Modern Applied Science, 13(2), 140–257.

Koehuan, V. A., Sugiyono, & Kamal, S. (2017). Investigation of Counter-Rotating Wind Turbine Performance using Computational Fluid Dynamics Simulation. IOP Conference Series: Materials Science and Engineering, 267(1), 12034.

Koehuan, Verdy A, & Mandala, J. F. (2020). Simulasi CFD Performa Aerodinamika Rotor Turbin Angin Counter-Rotating melalui Variasi Rasio Kecepatan Tip Blade dengan Solidity Konstan. LONTAR Jurnal Teknik Mesin Undana (LJTMU ), 7(02), 1–14. https://doi.org/10.1234/ljtmu.v9i02.3342

Koehuan, Verdy Ariyanto, Nogur, L., & Jasron, J. U. (2014). Studi Eksperimental Variasi Sudut Blade terhadap Kinerja Rotor Blade Turbin Angin Tipe Propeler Poros Horizontal Model Contra Rotating. LONTAR Jurnal Teknik Mesin Undana (LJTMU), 1(2), 72–81.

Krogstad, P.-Å., & Eriksen, P. E. (2013). “Blind test” calculations of the performance and wake development for a model wind turbine. Renewable Energy, 50, 325–333.

Kumar, P. S., Abraham, A., Bensingh, R. J., & Ilangovan, S. (2013). Computational and experimental analysis of a counter-rotating wind turbine system.

Kumar, P. S., Bensingh, R. J., & Abraham, A. (2012). Computational analysis of 30 Kw contra rotor wind turbine. ISRN Renewable Energy, 2012.

Lee, S., Kim, H., & Lee, S. (2010). Analysis of aerodynamic characteristics on a counter-rotating wind turbine. Current Applied Physics, 10(2 SUPPL.), S339–S342. https://doi.org/10.1016/j.cap.2009.11.073

MAULANA, A. (2019). STUDI EKSPERIMENTAL PERFORMA COUNTER ROTATING WIND TURBINE BERDIAMETER 3 M. Universitas Gadjah Mada.

Mo, J. O., & Lee, Y. H. (2012). CFD Investigation on the aerodynamic characteristics of a small-sized wind turbine of NREL PHASE VI operating with a stall-regulated method. Journal of Mechanical Science and Technology, 26(1), 81–92. https://doi.org/10.1007/s12206-011-1014-7

Oggiano, L. (2014). CFD simulations on the NTNU wind turbine rotor and comparison with experiments. Energy Procedia, 58, 111–116.

Sanderse, B. (2009). Aerodynamics of wind turbine wakes. Energy Research Center of the Netherlands (ECN), ECN-E–09-016, Petten, The Netherlands, Tech. Rep, 5(15), 153.

Ushiyama, I., Shimota, T., & Miura, Y. (1996). An experimental study of the two-staged wind turbines. Renewable Energy, 9(1–4), 909–912. https://www.sciencedirect.com/science/article/pii/0960148196884278

Vermeer, L. J., Sørensen, J. N., & Crespo, A. (2003). Wind turbine wake aerodynamics. Progress in Aerospace Sciences, 39, 467–510. https://www.sciencedirect.com/science/article/pii/S0376042103000782

Yulistiyanto, B. (2009). Vorticity Fields on Flow with Vortex System. 16(2), 83–94.

PlumX Metrics

Published
2023-10-31
How to Cite
Koehuan, V., Hale, R., & Mangesa, D. (2023). Simulasi CFD (Compulational Fluid Dynamics) Turbin Angin Sumbu Horizontal Tipe Propeler Tiga Blade Rotor Ganda Melalui Variasi Geometri. LONTAR Jurnal Teknik Mesin Undana, 10(02), 49-60. https://doi.org/10.35508/ljtmu.v10i02.11503

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.