Pengujian Skala Laboratorium Performa Rotor Turbin Angin Ganda Kontra-Rotasi Melalui Variasi Rasio Geometri

  • KOSTAN PAE(1)
    PROGRAM STUDI TEKNIK MESIN
  • Verdy A. Koehuan(2*)
    Program Studi Teknik Mesin, Fakultas Sains dan Teknik Universitas Nusa Cendana
  • Gurnawati Gurnawati(3)
    Program Studi Teknik Mesin, Fakultas Sains dan Teknik Universitas Nusa Cendana
  • (*) Corresponding Author

Abstract

The aim of this research is to determine the performance of a double rotor counter-rotation wind turbine on the geometric configuration of the CRWT rotor ratio. Tests were carried out on a laboratory scale with a turbine rotor blade model using the S826 airfoil series issued by NREL (National Renewable Energy Laboratory), where the rotor diameter at field scale (full scale) was 0.944 m. The blade is made through a 3D printing process using PLA (polylactic acid) material with an S826 airfoil profile. Laboratory scale testing uses a wind tunnel with test section dimensions of 0.6 m long, 0.3 m wide and 0.3 m high and the wind speed is considered uniform, varying from 3 m/s to 5 m/s. The performance of CRWT with rotor geometry ratio D1/D2 < 1 is better than CRWT with rotor geometry ratio D1/D2 > 1 at rotor distance Z/D1= 0.4. Varying the turbine geometry ratio with a smaller front rotor diameter, the power coefficient of the front rotor turbine is higher than the turbine with a larger front rotor diameter.

Downloads

Download data is not yet available.

References

. L. J. Vermeer, J. N. Sørensen, and A. Crespo, “Wind turbine wake aerodynamics,” Prog. Aerosp. Sci., vol. 39, pp. 467–510, 2003, AccSessed: Jun. 16, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0376042103000782.

. T. Kanemoto and A. M. Galal, “Development of intelligent wind turbine generator with tandem wind rotors and double rotational armatures (1st report, superior operation of tandem wind rotors),” JSME Int. J. Ser. B Fluids Therm. Eng., vol. 49, no. 2, pp. 450–457, 2006.

. V. A. Koehuan, V. A. Koehuan, and J. F. Mandala, “Simulasi CFD Performa Aerodinamika Rotor Turbin Angin Counter-Rotating melalui Variasi Rasio Kecepatan Tip Blade dengan Solidity Konstan,” 2020, doi: 10.1234/ljtmu.v9i02.3342.

. V. A. Koehuan, Sugiyono, and S. Kamal, “Numerical Analysis on Aerodynamic Performance of Counter-rotating Wind Turbine through Rear Rotor Configuration,” Mod. Appl. Sci., vol. 13, no. 2, pp. 140–257, 2019.

. V. Koehuan, Sugiyono, and S. Kamal, “Investigation of Counter-Rotating Wind Turbine Performance using Computational Fluid Dynamics Simulation,” iopscience.iop.org, vol. IOP Conf., no. 267 012034, 2017, Accessed: Jun. 10, 2018. [Online]. Available: http://iopscience.iop.org/article/10.1088/1757-899X/267/1/012034/meta.

. P.-Å. Krogstad and P. E. Eriksen, “‘Blind test’ calculations of the performance and wake development for a model wind turbine,” Renew. energy, vol. 50, pp. 325–333, 2013.

. I. Ushiyama, T. Shimota, and Y. Miura, “An experimental study of the two-staged wind turbines,” Renew. Energy, vol. 9, no. 1–4, pp. 909–912, 1996, Accessed: Jun. 16, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0960148196884278.

. S. N. Jung, T. S. No, and K. W. Ryu, “Aerodynamic performance prediction of a 30 kW counter-rotating wind turbine system,” Renew. Energy, vol. 30, no. 5, pp. 631–644, 2005, doi: 10.1016/j.renene.2004.07.005.

. V. A. Koehuan, L. Nogur, and J. U. Jasron, “Studi Eksperimental Variasi Bladet Blade terhadap Kinerja Rotor Blade Turbin Angin Tipe Propeler Poros Horizontal Model Contra Rotating,” LONTAR J. Tek. Mesin Undana, vol. 1, no. 2, pp. 72–81, 2014.

. A. MAULANA, “STUDI EKSPERIMENTAL PERFORMA COUNTER ROTATING WIND TURBINE BERDIAMETER 3 M.” Universitas Gadjah Mada, 2019.

. P. S. Kumar, R. J. Bensingh, and A. Abraham, “Computational analysis of 30 Kw contra rotor wind turbine,” ISRN Renew. Energy, vol. 2012, 2012.

. P. S. Kumar, A. Abraham, R. J. Bensingh, and S. Ilangovan, “Computational and experimental analysis of a counter-rotating wind turbine system,” 2013.

. S. N. Jung, T.-S. No, and K.-W. Ryu, “Aerodynamic performance prediction of a 30 kW counter-rotating wind turbine system,” Renew. Energy, vol. 30, no. 5, pp. 631–644, 2005.

. S. Lee, H. Kim, and S. Lee, “Analysis of aerodynamic characteristics on a counter-rotating wind turbine,” Curr. Appl. Phys., vol. 10, no. 2, pp. S339–S342, 2010.

. D. M. Eggleston and F. Stoddard, “Wind turbine engineering design,” 1987.

.

PlumX Metrics

Published
2024-05-28
How to Cite
PAE, K., Koehuan, V., & Gurnawati, G. (2024). Pengujian Skala Laboratorium Performa Rotor Turbin Angin Ganda Kontra-Rotasi Melalui Variasi Rasio Geometri. LONTAR Jurnal Teknik Mesin Undana, 11(01), 53-64. https://doi.org/10.35508/ljtmu.v11i01.14082
Section
Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.