The Effect of High Variation of Passive Solar Distillation Cover Collector on Distillate Productivity
Abstract
Clean water is a vital resource that is increasingly difficult to obtain in many regions of the world, including Indonesia, which faces significant challenges in providing clean water. Passive solar desalination is an efficient alternative method to convert seawater into fresh water by utilizing solar energy. This study aims to analyze the effect of varying cover collector heights on distillate productivity in passive solar desalination, using charcoal as an energy-absorbing material. The varied cover collector heights used were 30 cm, 45 cm, and 55 cm. The results of the study show that the smaller the distance between the seawater surface and the cover collector, the higher the distillate productivity. Basin 1 (30 cm) produced the highest distillate (120 ml), followed by Basin 2 (45 cm) with 94 ml, and Basin 3 (55 cm) with 60 ml. This indicates that a smaller gap between the cover collector and the seawater surface increases the evaporation and condensation rates, contributing to higher distillate productivity.
Downloads
References
Ardiani, S., Rahmayanti, H. D., & Akmalia, N. (2019). Analisis Kapilaritas Air pada Kain. Jurnal Fisika, 9(2), 47–51.
Azeem, M., Boughattas, A., Wiener, J., & Havelka, A. (2017). Mechanism of liquid water transport in fabrics; A review. Vlakna a Textil, 24(4), 58–65.
Belessiotis, V., Kalogirou, S., & Delyannis, E. (2016). Thermal Solar Desalination Methods and Systems. Elsevier.
Chaidir, B. (2010). Wilayah Perairan Indonesia. Modul Konservasi Sumberdaya Perairan, 26–64.
Chamsa-ard, W., Fawcett, D., Fung, C. C., & Poinern, G. (2020). Solar Thermal Energy Stills for Desalination: A Review of Designs, Operational Parameters and Material Advances. Journal of Energy and Power Technology, 2(4). https://doi.org/10.21926/jept.2004018
Chatterjee, A., & Singh, P. (2014). Studies on Wicking Behaviour of Polyester Fabric. Journal of Textiles, 2014(February), 1–11. https://doi.org/10.1155/2014/379731
Durkaieswaran, P., & Murugavel, K. K. (2015). Various special designs of single basin passive solar still - A review. Renewable and Sustainable Energy Reviews, 49, 1048–1060. https://doi.org/10.1016/j.rser.2015.04.111
El-Sebaii, A. A., Al-Ghamdi, A. A., Al-Hazmi, F. S., & Faidah, A. S. (2009). Thermal performance of a single basin solar still with PCM as a storage medium. Applied Energy, 86(7–8), 1187–1195. https://doi.org/10.1016/j.apenergy.2008.10.014
Essa, F. A., Abdullah, A. K., Majdi, H. S., Basem, A., Dhahad, H. A., Omara, Z. M., Mohammed, S. A., Alawee, W. H., Ezzi, A. Al, & Yusaf, T. (2022). Parameters Affecting the Efficiency of Solar Stills—Recent Review. Sustainability (Switzerland), 14(17). https://doi.org/10.3390/su141710668
Haryanto B, M. Z. (2006). Buku Ajar : Perpindahan panas. Unsada.
Hayuningtyas, S. W., & Sambada, F. A. R. (2018). Efisiensi Destilasi Jenis Absorber Kain Menggunakan Kolektor Air Energi Surya. ReTII, 2018(November), 331–336.
Holman, J. P. (1995). Perpindahan Kalor (Ir. E. Jasjfi (ed.); Sixth Edit). Erlangga.
Jamil, B., & Akhtar, N. (2016). Effect of gap between absorber plate and condenser cover on the performance of a solar still. Green Energy and Technology, PartF2(June 2016), 161–173. https://doi.org/10.1007/978-3-319-30127-3_14
Kalogirou, S. A. (2014a). Solar Energy Engineering: Processes and Systems: Second Edition. In Solar Energy Engineering: Processes and Systems: Second Edition. https://doi.org/10.1016/C2011-0-07038-2
Kalogirou, S. A. (2014b). Solar Energy Engineering Processes and Systems Second Edition (2nd editio). Elsevier Academic Press.
Luo, X., Ma, X., Xu, Y. F., Feng, Z. K., Du, W. P., Wang, R., & Li, M. (2018). Solar water heating system. In Handbook of Energy Systems in Green Buildings. https://doi.org/10.1007/978-3-662-49120-1_32
Mushach, M. (1995). Termodinamika dan Mekanika Statistik. Departemen Pendidikan dan Kebudayaan.
Muthu Manokar, A., Kalidasa Murugavel, K., & Esakkimuthu, G. (2014). Different parameters affecting the rate of evaporation and condensation on passive solar still - A review. Renewable and Sustainable Energy Reviews, 38, 309–322. https://doi.org/10.1016/j.rser.2014.05.092
Sambada, F. R., & Ananta, F. (2020). Peningkatan Efisiensi Distilasi Air Energi Surya Menggunakan Pengapung. Jurnal Energi Dan Manufaktur, 13(2), 70. https://doi.org/10.24843/jem.2020.v13.i02.p05
Sampathkumar, K., Arjunan, T. V., Pitchandi, P., & Senthilkumar, P. (2010). Active solar distillation-A detailed review. Renewable and Sustainable Energy Reviews, 14(6), 1503–1526. https://doi.org/10.1016/j.rser.2010.01.023
Tao, F., Valenzuela Garcia, A., Xiao, T., Zhang, Y., Yin, Y., & Chen, X. (2020). Interfacial Solar Vapor Generation: Introducing Students to Experimental Procedures and Analysis for Efficiently Harvesting Energy and Generating Vapor at the Air-Water Interface. Journal of Chemical Education, 97(4), 1093–1100. https://doi.org/10.1021/acs.jchemed.9b00643
UN-Water. (2006). Coping With Water Scarcity : A Strategic Issue and Priority for System-Wide Action. https://doi.org/10.1007/978-1-4020-9579-5
Wibolo, A., Adiaksa, I. M. A., & Gunung, I. N. (2021). Studi Eksperimental Pengaruh Tekanan Udara Terhadap Perpindahan Panas Pada Kondensor Destilasi. Seminar Nasional Terapan Riset Inovatif (SENTRINOV) Ke-VII, 232–238.
Copyright (c) 2025 LONTAR Jurnal Teknik Mesin Undana

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.