Analisis Potensi Angin Sebagai Sumber Penggerak Turbin Angin Savonius Di Kabupaten Timor Tengah Selatan (TTS)
Ironis R. Naitio, Arifin Sanusi, dan Nurhayati
Abstract
Wind energy is an energy that cannot be separated from our daily lives. Wind is one of the renewable energies that will never run out. In addition, wind energy also does not produce pollution that can disturb the environment. This makes wind energy as one of the alternative energy that has great potential, so it is necessary to conduct research for wider utilization and in long -term use. Savonius wind turbine is one of the vertical shaft turbines (VAWT) where the savonius wind turbine has a main rotor that rotates vertically, and can utilize wind from all directions, and can work/rotate at low wind speeds. The method of data analysis that I can use in this research is to take data directly and simultaneously on wind speed, turbine rotation, and others. The results of data analysis obtained: (1) the highest average wind speed for 1 month is 5.62 m/s with a turbine rotation of 845.36 rpm (2) The highest turbine power is 104 W (3) Turbine effective power is 28.08 W (4) and The highest average efficiency is 23.34 % and the lowest is 8.86 %.
Downloads
References
[2]. Samuel, R & MS, Soeripno. (2013). Pengembangan Energi Angin di Indonesia. Bogor: Indonesia Wind Energy Society (IWES).
[3]. Abraham, J. P., Plourde, B. D., Mowry, G. S., Minkowycz, W. J., & Sparrow, E. M. (2012). Summary of Savonius Wind Turbine Development and Future Applications for Small-Scale Power Generation. Journal of Renewable and Sustainable Energy , 1-20.
[4]. Afungchui, D., Kamoun, B., & Helali, A. (2014). Vortical Structures in the Wake of the Savonius Wind Turbine by the Discrete Vortex Method. Renewable Energy , 174-179.
[5]. Pamungkas, S. F., Wijayanto, D. S., Saputro, H., & Widiastuti, I. (2018). Performance "S" Type Savonius Wind Turbine with Variation of Fin Addition on Blade. Annual Applied Science and Engineering Conference , 1-7.
[6]. Napitupulu, F. H., & Siregar, S. (2013). Perancangan Turbin Vertikal Axis Savonius dengan Menggunkan 8 Buah Sudu Lengkung. Jurnal Dinamis, Vol. 1, No. 13 , 24-36.
[7]. Aryanto, F., Mara, I. M., & Nuarsa, M. (2013). Pengaruh Kecepatan Angin dan Variasi Jumlah Sudu Terhadap Unjuk Kerja Turbin Angin Poros Horizontal. Dinamika Teknik Mesin, Vol. 3, No. 1 , 50-59.
[8]. Saputra, C. I., Rustana, C. E., & Nasbey, H. (2015). Pengembangan Turbin Angin Sumbu Vertikal Tipe Triple-Stage Savonius dengan Poros Ganda. Prosiding Seminar Nasional Fisika (E Journal), Vol. 4 , 43-46.
[9]. Nahkoda, Y. I., & Saleh, C. (2015). Rancang Bangun Kincir Angin Sumbu Vertikal Pembangkit Tenaga Listrik Portabel. Seminar Nasional Sains dan Teknologi Terapan III , 59-67.
[10]. Teja, D. P. (2017). Studi Numerik Turbin Angin Darrieus-Savonius dengan Penambahan Stage Rotor Darrieus. Surabaya: Jurusan Teknik Mesin, ITS.
[11]. Giofani. (2010). Unjuk Kerja Kincir Angin Savonius Satu Tingkat dengan Variasi Jumlah Sudu 4 dan 6. Yogyakarta: Program Studi Teknik Mesin, Universitas Sanata Dharma.
[12]. Trikurniawan, Y. W. (2017). Karakteristik Turbin Angin Savonius Termodifikasi Empat Sudu dengan Lima Variasi Sudut Pitch Rotor Turbin. Yogyakarta: Program Studi Teknik Mesin, Universitas Sanata Dharma.
[13]. Arifin Sanusi, Sudjito Soeparman, Slamet Wahyudi, & Lilis Yulianti. (2016). Experimental Study of Combined Blade Savonius Wind Turbine. INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH. A.Sanusi etal., vol.6, No.2. 615-619.
[14]. Pangestu, R., & Andriani H., S. A. (2017). Perancangan Turbin Angin Poros Vertikal Tipe Savonius Bertingkat dengan Variasi Blade "Savonius Helical L Rotor". Bandung: Politeknik Negeri Bandung.