Analisis Pengaruh Panjang Sirip Heatsink Terhadap Produksi Air Kondensasi pada Alat Pengahasil Air Atmosfir
Erkes Lodoh, Muhamad Jafri, Ben V. Tarigan
Abstract
This study aims to determine the effect of heat sink fin length oriented at 700 on the production of atmospheric air condensation water. The method used is an experimental method of 3 converters with variations in the length of the heat sink; 8 cm, 10 cm and 12 cm. The three sizes of these heat sinks are that the length of the heat sink affects the distribution of environmental temperature, the temperature on the cold side of the heat sink, the temperature on the hot side of the heat sink, the temperature in the condensing chamber and the volume of condensed water. From the third study, the best size was the length of the 12 cm heat sink with a water production of 26.9 ml/24h.
Downloads
References
[2]. Greg M. Peters & Naomi J. Blackburn & Michael Armedion, 2013, “Environmental assessment of air to water machines-triangulation to manage scope uncertainty”, Int J Life Cycle Assess, 18:1149–1157.
[3]. Nandy aditya, dkk, 2014. "A Project on Atmospheric Water Generator with the Concept of Peltier Effect", International Journal of Advanced Computer Research, Volume (4): Issue (15). MCKV Institute of Engineering under West Bengal University of Technology (WBUT).
[4]. Liu, S.; He, W.; Hu, D.; Lv, S.; Chen, D.; Wu, X.; Xu, F.; Li, S. Experimental analysis of a portable atmospheric water generator by thermoelectric cooling method. Energy Procedia 2017, 142, 1609–1614.
[5]. Carson T. Tangan, Steffen Peuker., 2019, “An experimental study of the influence of orientation on water condensation of a thermoelectric cooling heatsink,” Elsevier.
[6]. Milani, D.; Qadir, A., 2014, “Vassallo, A.; Chiesa, M.; Abbas, A., Experimentally validated model for atmospheric water generation using a solar assisted desiccant dehumidification system. Energy and Buildings Vol. 77, p. 236-246.
[7]. Lv, S.; He, W.; Wang, L.; Li, G.; Ji, J.; Chen, H.; Zhang, G., 2016, “Design, fabrication and feasibility analysis of a thermo-electric wearable helmet”. Applied Thermal Engineering, 109, 138-146.
[8]. Vasant, P.; Kose, U.; Watada, J., 2017, “Metaheuristic Techniques in Enhancing the Efficiency and Performance of Thermo-Electric Cooling Devices”. Energies, Vol. 10, (11), 50.
(http://peltiermodules.com/).
[9]. Liu, Y.; Su, Y., 2018, “Experimental investigations on COPs of thermoelectric module frosting systems with various hot side cooling methods”, Applied Thermal Engineering, 144, 747-756.
[10]. Wei He, Pengkun Yu, Zhongting Hu, Song Lv, Minghui Qin and Cairui Yu, 2020, “Experimental Study and Performance Analysis of a Portable Atmospheric Water Generator”, 13, 73; doi:10.3390/en13010073.
[11]. Gupta Rohan., Gupta Jogesh., Gupta Ajay., & Mahadik Uday. 2016. “Water Through Air Using Peltier Elements”. JSTE - International Journal of Science Technology & Engineering, Volume 2, ISSN (online): 2349-784X.
[12]. Darwin Setiyawan, 2017, Eksperimen Penghasil Air Tawar Dari Udara Menggunakan Thermoelektrik Cooler Untuk Kebutuhan Air Minum Di Lifeboat, ITS, Surabaya..