Studi Eksperimen Kinerja Penukar Kalor Kompak Sebagai Pemanas Tambahan di Rumah Pengering Hibrid
Abstract
The process of drying a hybrid system that uses a combination of solar energy and biomass contains some useful heat in the chimney of the biomass stove. This heat waste has a high enough temperature so that with the help of a compact heat exchanger it can be used as an additional heater. The purpose of this study was to analyze the performance of a cross-flow type discrete flat plate-finned tube compact heat exchanger with an inline tube arrangement which is used as an additional heating device in the hybrid dryer housing. The test was carried out at 10.00-15.00 for three days of testing with variations in air flow velocity of 1.3 m/s, 1.6 m/s and 1.8 m/s while the velocity of water flow in the pipe was considered constant with 0.000168 m/s. s and the air flow velocity in the exhaust fan is kept constant at 1 m/s. The results of this study indicate that the overall heat transfer coefficient is strongly influenced by the effectiveness of the heat exchanger, and with the increase in the effectiveness of the heat exchanger, the heat transfer coefficient will also increase. The highest overall heat transfer coefficient was obtained on the second day, namely 99.263 W/m2.oC. The total heat transfer rate is influenced by the effectiveness of the heat exchanger but at a certain value both values tend to be stable due to the limited dimensions of the heat exchanger. NTU is very influential on the effectiveness of the exchanger, and in this case the value of NTU ranges from 0.6-0.8 while the effectiveness of the heat exchanger ranges from 46%-56%
Downloads
References
[2]. Abadi, F. R., Ahmadi, N. R., dan Nurhasanah, A., 2018, Keragaan Pengering Hybrid Energi Surya dan Biomassa untuk Pengeringan Sawut Ubi Kayu Terfermentasi, Buletin Palawija, Volume 16, Nomor 2, Oktober, hal. 54 – 64.
[3]. Tahir, M., Kasim, R., dan Bait, Y., 2013, Uji Performansi Desain Terintegrasi Tungku Biomassa dan Penukar Panas, AGRITECH, Volume 33, Nomor 2, Mei, hal. 219 – 225.
[4]. Sulaeman, dan Satria, N., 2014, Analisa Efektivitas Alat Penukar Panas, Jurnal Teknik Mesin, Volume 4, Nomor 1, April, hal. 22 – 24.
[5]. Firman, L. M., 2014, Rancang Bangun Alat Penukar Kalor Plat Datar, Jurnal Mekanikal Teknik Mesin, Volume 10, Nomor 2, Agustus, hal. 33 – 38.
[6]. Syukran, 2018, Kaji Efisiensi Temperatur Penukar Panas dengan Variasi Aliran untuk Aplikasi Pengering, Jurnal POLIMESIN, Volume 16, Nomor 2, Agustus, hal. 39 – 42.
[7]. Piarah, W. H., Djafar, Z., Aziz, N., dan Bahasyah, S., 2018, Kaji Prestasi Alat Penukar Panas pada Mesin Pengering Rak Telur dengan Berbahan Bakar Sekam, Prosiding Seminar Ilmiah Nasional Sains dan Teknologi, Volume 4, November, hal. 409 – 421.
[8]. Azwinur, dan Zulkifli, 2019, Kaji Eksperimental Pengaruh Baffle pada Alat Penukar Panas Aliran Searah dalam Upaya Optimasi Sistem Pengering, SINTEK JURNAL: Jurnal Ilmiah Teknik Mesin, Volume 13, Nomor 1, Juni, hal. 8 – 14.
[9]. Dwinanto, M. M., Riwu, D. B. N., Pah, J. C. A., and Tobe, A. Y., 2019, Multi-Objective Optimization of a Discrete Plate Finned-Tube Evaporator Design using Entropy Generation Minimization Method, International Journal of Innovation, Creativity and Change, Volume 5, Issue 3, pp. 370 – 383.
[10]. Holman, J. P., 2010, Heat Transfer, Tenth Edition, McGraw-Hill Companies, New York, pp. 521 – 567.
[11]. Kakaç, S., Liu, H., and Pramuanjaroenkij, A., 2012, Heat Exchangers (Selection, Rating, and Thermal Design), Third Edition, CRC Press, Taylor & Francis Group, Boca Raton, pp. 427 – 445.
[12]. Zohuri, B., 2017, Compact Heat Exchangers (Selection, Application, Design and Evaluation), Springer International Publishing, Switzerland, pp. 57 – 183.