CLASSIFICATION OF DISTRACTED DRIVER USING SUPPORT VECTOR MACHINE BASED ON PRINCIPAL COMPONENT ANALYSIS FEATURE REDUCTION AND CONVOLUTIONAL NEURAL NETWORK

  • Achmad Yuneda Alfajr(1*)
    Universitas Pembangunan Nasional "Veteran" Jawa Timur
  • Kartini Kartini(2)
    , Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • Anggraini Puspita Sari(3)
    Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • (*) Corresponding Author
Keywords: Distracted Drivers, CNN, PCA, SVM

Abstract

The use of ground transportation in Indonesia, especially in major cities like Surabaya, has experienced rapid growth. However, this increased usage has also led to a rise in traffic accidents. One of the main contributing factors is driver distraction. Therefore, this study aims to develop a method for detecting distracted drivers using image classification technology with Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) models. In this research, data was obtained from the "State Farm Distracted Driver Detection" dataset, which contains images of drivers who are either distracted or not focused while driving. The initial process involves data preprocessing, such as resizing images to 50 x 50 pixels and dividing the dataset into training and testing data. Next, feature extraction is performed using a CNN model with three convolutional layers, three Maxpooling layers, and one flattened layer. After feature extraction, the Principal Component Analysis (PCA) method is used to reduce the dimensionality of the data. Furthermore, an SVM model was trained using data reduced by PCA with a 60:40 data split. This research conducted a comparison between the use of PCA and not using PCA. Based on the test results, the use of PCA not only improved the classification accuracy to 96.28% compared to 92.46% without PCA but also accelerated the training time to 10.64 seconds from 19.67 seconds without PCA.

Downloads

Download data is not yet available.

References

H. Asyari, F. Maulana, K. Muhammad, dan R. Aulia Imran, “Pengaruh Driving Distraction Penggunaan Smartphone Terhadap Pengemudi Sebagai Penyebab Kecelakaan Lalu Lintas Dengan Multilevel Factorial,” Din. Rekayasa, vol. 18, no. 244159, hal. 99–108, 2022.

L. Lady dan A. Umyati, “Human Error dalam Berkendara Berdasarkan Kebiasaan Pelanggaran oleh Pengemudi,” J. Manaj. Transp. Logistik, vol. 8, no. 1, hal. 21, 2021, doi: 10.54324/j.mtl.v8i1.510.

N. C. for S. and Analysis, “Distracted Driving 2018,” Dot Hs 812 132, no. April 2020, hal. 1–7, 2020, [Daring]. Tersedia pada: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812381

I. W. Agustin, C. Meidiana, dan S. Muljaningsih, “Studi Simulasi Model Kecelakaan Pengendara Mobil untuk Meningkatkan Keselamatan Lalu Lintas di Daerah Perkotaan,” War. Penelit. Perhub., vol. 32, no. 2, hal. 93–102, 2020, doi: 10.25104/warlit.v32i2.1513.

H. V. Koay, J. H. Chuah, dan C. O. Chow, “Convolutional Neural Network or Vision Transformer? Benchmarking Various Machine Learning Models for Distracted Driver Detection,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2021-Decem, hal. 417–422, 2021, doi: 10.1109/TENCON54134.2021.9707341.

Q. Bu, J. Qiu, H. Wu, dan C. Hu, “Research on driver’s distracted behavior detection method based on multiclass classification and SVM,” IEEE Int. Conf. Robot. Biomimetics, ROBIO 2019, no. December, hal. 444–448, 2019, doi: 10.1109/ROBIO49542.2019.8961551.

NHTSA, “Research Note Distracted Driving 2021,” Dot Hs 812 132, vol. 2019, no. April 2015, hal. 1–8, 2023, [Daring]. Tersedia pada: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812381

I. Goodfellow, Y. Bengio, dan A. Courville, Deep learning. MIT Press, 2016. [Daring]. Tersedia pada: https://www.deeplearningbook.org/

A. Hibatullah dan I. Maliki, “Penerapan Metode Convolutional Neural Network Pada Pengenalan Pola Citra Sandi Rumput,” hal. 1–8, 2019.

A. P. Sari, H. Suzuki, T. Kitajima, T. Yasuno, D. A. Prasetya, dan N. Nachrowie, “Prediction model of wind speed and direction using convolutional neural network - Long short term memory,” PECon 2020 - 2020 IEEE Int. Conf. Power Energy, hal. 356–361, 2020, doi: 10.1109/PECon48942.2020.9314474.

M. Z. Nasution, “Penerapan Principal Component Analysis (PCA) Dalam Penentuan Faktor Dominan Yang Mempengaruhi Prestasi Belajar Siswa (Studi Kasus : SMK Raksana 2 Medan),” J. Teknol. Inf., vol. 3, no. 1, hal. 41, 2019, doi: 10.36294/jurti.v3i1.686.

Adiwijaya, U. N. Wisesty, E. Lisnawati, A. Aditsania, dan D. S. Kusumo, “Dimensionality reduction using Principal Component Analysis for cancer detection based on microarray data classification,” J. Comput. Sci., vol. 14, no. 11, hal. 1521–1530, 2018, doi: 10.3844/jcssp.2018.1521.1530.

I. P. Monika dan M. T. Furqon, “Penerapan Metode Support Vector Machine (SVM) Pada Klasifikasi Penyimpangan Tumbuh Kembang Anak,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 10, hal. 3165–3166, 2018, [Daring]. Tersedia pada: http://j-ptiik.ub.ac.id

N. Maulidah, R. Supriyadi, D. Y. Utami, F. N. Hasan, A. Fauzi, dan A. Christian, “Prediksi Penyakit Diabetes Melitus Menggunakan Metode Support Vector Machine dan Naive Bayes,” Indones. J. Softw. Eng., vol. 7, no. 1, hal. 63–68, 2021, doi: 10.31294/ijse.v7i1.10279.

M. Blondel, A. Fujino, dan N. Ueda, “Large-scale multiclass support vector machine training via euclidean projection onto the simplex,” Proc. - Int. Conf. Pattern Recognit., no. 4, hal. 1289–1294, 2014, doi: 10.1109/ICPR.2014.231.

K. Crammer dan Y. Singer, “On The Algorithmic Implementation of Multiclass Kernel-based Vector Machines,” J. Mach. Learn. Res., vol. 2, hal. 265–292, 2001.

B. P. Pratiwi, A. S. Handayani, dan S. Sarjana, “Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi Wsn Menggunakan Confusion Matrix,” J. Inform. Upgris, vol. 6, no. 2, hal. 66–75, 2021, doi: 10.26877/jiu.v6i2.6552.

M. Anand, A. Velu, dan P. Whig, “Prediction of Loan Behaviour with Machine Learning Models for Secure Banking,” J. Comput. Sci. Eng., vol. 3, no. 1, hal. 1–13, 2022, doi: 10.36596/jcse.v3i1.237.

W. K. Anna Montoya, Dan Holman, SF_data_science, Taylor Smith, “State Farm Distracted Driver Detection,” Kaggle, 2016. https://www.kaggle.com/competitions/state-farm-distracted-driver-detection

I. O. Muraina, “Ideal Dataset Splitting Ratios in Machine Learning Algorithms: General Concerns for Data Scientists and Data Analysts,” 7th Int. Mardin Artuklu Sci. Res. Conf., no. February, hal. 496–504, 2022.

PlumX Metrics

Published
2023-10-31
How to Cite
[1]
A. Alfajr, K. Kartini, and A. Sari, “CLASSIFICATION OF DISTRACTED DRIVER USING SUPPORT VECTOR MACHINE BASED ON PRINCIPAL COMPONENT ANALYSIS FEATURE REDUCTION AND CONVOLUTIONAL NEURAL NETWORK”, jicon, vol. 11, no. 2, pp. 237-245, Oct. 2023.
Section
Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.