REVENUE SEGMENTATION FROM PAYMENT AGGREGATOR USING K-MEANS CLASSTERIZATION METHOD

  • Dimas Fahmi Suntoro(1*)
    Universitas Budi Luhur
  • Netty Fitriani(2)
    Universitas Budi Luhur
  • Arief Wibowo(3)
    Universitas Budi Luhur
  • (*) Corresponding Author

Abstract

Customer habits can influence revenue from financial technology-based companies in choosing the type of payment partner. Customers are very selective in having vendors oriented towards convenience, promotions given, and benefits offered. This study describes the application of data mining for clustering, using the K-means method by classifying income in a payment aggregator. The research aims to identify patterns and similarities in revenue data to help decision-making and business analysis. The K-means algorithm is used to partition income data into groups based on their similarities. The research results show that testing uses various quantities: k = 2; DBI = 0.023, k = 3; DBI = 0.209, k = 4; DBI = 0.116 with a max run of ten. This study obtained the best results at a value of k = 4, with a clustering pattern in four payment type categories: copper, silver, gold, and platinum. The results showed that the payment aggregator categories with the highest income values were the CASH, MINIATM TRANSFER, and VA TRANSFER methods with 10.78% from revenue. From the pattern and information provided, the company needs to maintain features that support the payment aggregator with the highest revenue, while for the payment aggregator generating lower revenue, an evaluation is required to consider adding merchants in order to boost transaction frequency and amounts.

Downloads

Download data is not yet available.

References

[1] N. Leksono Putri Handayani, P. Fitrijanti Soeparan, P. Pratama Kendal Jl Raya Utama Timur No, and K. Kendal, “Peran Sistem Pembayaran Digital Dalam Revitalisasi UMKM,” Journal of Economics and Business Management, vol. 1, no. 3, 2022.
[2] Sekar Setyaningtyas, B. Indarmawan Nugroho, and Z. Arif, “Tinjauan Pustaka Sistematis: Penerapan Data Mining Teknik Clustering Algoritma K-Means,” Jurnal Teknoif Teknik Informatika Institut Teknologi Padang, vol. 10, no. 2, pp. 52–61, Oct. 2022, doi: 10.21063/jtif.2022.v10.2.52-61.
[3] B. Harahap, “Penerapan Algoritma K-Means Untuk Menentukan Bahan Bangunan Laris (Studi Kasus Pada UD. Toko Bangunan YD Indarung),” Regional Development Industry & Health Science, Technology and Art of Life, pp. 394–403, 2019, [Online]. Available: https://ptki.ac.id/jurnal/index.php/readystar/article/view/82
[4] Yuli Mardi, “Data Mining: Klasifikasi Menggunakan Algoritma C4. 5 Data mining merupakan bagian dari tahapan proses Knowledge Discovery in Database (KDD). Jurnal Edik Informatika,” Jurnal Edik Informatika, vol. 2, no. 2, pp. 213–219, 2019.
[5] F. Nur, M. Zarlis, and B. B. Nasution, “Penerapan Algoritma K-Means Pada Siswa Baru Sekolahmenengah Kejuruan Untuk Clustering Jurusan,” 2017. doi: 10.30743/infotekjar. V 1i2.70.
[6] N. F. Adani et al., “Implementasi Data Mining Untuk Pengelompokan Data Penjualan Berdasarkan Pola Pembelian Menggunakan Algoritma K-Means Clustering Pada Toko Syihan,” Jurnal Cyber Tech, vol. x. No.x, no. x, pp. 1–11, 2019, [Online]. Available: https://ojs.trigunadharma.ac.id/index.php/jct/article/view/4648%0Ahttps://ojs.trigunadharma.ac.id/index.php/jct/article/download/4648/791
[7] A. Satriawan, R. Andreswari, and O. N. Pratiwi, “Segmentasi Pelanggan Telkomsel Menggunakan Metode Clustering Dengan RFM Model dan Algoritma K-Means,” e-Proceeding of Engineering, vol. 8, no. 2, pp. 2876–2883, 2021, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/14687
[8] W. M. P. Dhuhita, “Clustering Metode K-Means Untuk Menentukan Status Gizi Balita,” 2015.
[9] R. Nainggolan and F. A. T. Tobing, “Analisis Cluster Dengan Menggunakan K-Means Untuk Pengelompokkan Online Customer Reviews (Ocr) Pada Online Marketplace,” METHODIKA: Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 1, pp. 1–5, 2020, doi: 10.46880/mtk. V 6i1.246.
[10] B. S. Purnomo and P. T. Prasetyaningrum, “Penerapan Data Mining Dalam Mengelompokkan Kunjungan Wisatawan di Kota Yogyakarta Menggunakan Metode K-Means,” 2021.
[11] N. Dwitri, J. A. Tampubolon, S. Prayoga, F. I. R.H Zer, and D. Hartama, “Penerapan Algoritma K-Means Dalam Menentukan Tingkat Penyebaran Pandemi Covid-19 Di Indonesia,” Jurnal Teknologi Informasi, vol. 4, no. 1, pp. 128–132, 2020, doi: 10.36294/jurti. V 4i1.1266.

PlumX Metrics

Published
2025-03-29
How to Cite
[1]
D. Suntoro, N. Fitriani, and A. Wibowo, “REVENUE SEGMENTATION FROM PAYMENT AGGREGATOR USING K-MEANS CLASSTERIZATION METHOD”, jicon, vol. 13, no. 1, pp. 18-25, Mar. 2025.
Section
Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.