SELEKSI FITUR YANG BERPENGARUH MENGGUNAKAN NILAI MEAN PADA KLASIFIKASI FRAGMEN METAGENOME

  • Arini Aha Pekuwali(1*)
    Universitas Kristen Wira Wacana Sumba
  • Wisnu Ananta Kusuma(2)
    Universitas Kristen Wira Wacana Sumba
  • Agus Buono(3)
    Institut Pertanian Bogor
  • (*) Corresponding Author
Keywords: influential feature selection, mean value, metagnome classification

Abstract

Pekuwali (2018) has conducted research into the classification of metagenome fragments using spaced k-mers. Optimize the arrangement of features using Genetic Algorithms. Pekuwali (2018) concluded that the best arrangement of features or called chromosomes is 111111110001 with a fitness value of 85.42. Chromosome 111111110001 produces 336 features of extracting DNA fragments. This research aims to find out which features influence classi fi cation and the resulting accuracy. The method used is the Mean value. The mean value method was chosen because the data distribution is normal or close to normal. This study concludes that the influential features in the classification are features 22 to 27 with an accuracy of 78.83% and features 38 to 43 with an accuracy of 79.67%.

 

 

Downloads

Download data is not yet available.

References

Altschul, S., Gish, W., Miller, W., Myers, E. dan Lipman D. (1990). “Basic local alignment search tool”. Journal of Molecular Biology. 215(3):403-410. doi:10.1016/S0022-2836(05)80360-2

Bouchot, J.L., Trimble, W.L., Ditzler, G., Lan, Y., Essinger, S., dan Rosen, G. (2013). Advances in machine learning for processing and comparison of metagenomic data [internet]. [diunduh 15 September 2014]. Tersedia pada: http://www.sessinger.com/Publications/metagenomics_advances_ML_preprint.pdf

Choi, J.H. dan Cho, H.G. (2002). “Analysis of common k-mers for whole genome sequence using SSB-tree”. Genome Information. 13: 30-41

Handelsman, J. (2007). The new science of metagenomics: Revealing the secrets of our microbial planet. The National Academics Press, Washington, USA.

Huson, D.H., Auch, A.F. dan Schuster, S.C. (2007). “MEGAN analysis of metagenomic data”. Genome Research. 17(3):337-386. doi: 10.1101/gr.5969107.

Kusuma, W.A. (2012). Combined approaches for improving the performance of denovo DNA sequence assembly and metagenomic classification of short fragments from next generation sequencer [disertasi]. Tokyo Institute of Technology, Tokyo, Japan.

Ma, B., Tromp, J., dan Li, M. (2002). PatternHunter: faster and more sensitive homology search. Bioinformatics. 18(3):440-445.

Meyerdierks, A. dan Glockner, F.O. (2010). “Metagenome Analysis”. Advances in Marine Genomics 1. doi:10.1007/978-90-481-8639-6_2.

Pekuwali, A.A. (2015). Optimasi Pengekstraksi Fitur Spaced K-Mers Frekuensi Menggunakan Algoritme Genetika Pada Pengklasifikasian Fragmen Metagenome [tesis]. Institut Pertanian Bogor, Bogor, Indonesia.

Pekuwali, A.A, Kusuma, W.A. dan Buono, A. (2018). “Optimization of Spaced K-mer Frequency Feature Extraction using Genetic Algorithms for Metagenome Fragment Classification”. Journal of ICT Research and Applications, 12(2), 123-137 DOI: 10.5614/itbj.ict.res.appl.2018.12.2.2.

Riesenfeld, C.S., Schloss, P.D. dan Handelsman, J. (2004). “Metagenomics: genomic analysis of microbial communities”. Annual Review of Genetics. 38:525–552. DOI:10.1146/annurev.genet.38. 072902.091216

PlumX Metrics

Published
2020-03-31
How to Cite
[1]
A. Pekuwali, W. Kusuma, and A. Buono, “SELEKSI FITUR YANG BERPENGARUH MENGGUNAKAN NILAI MEAN PADA KLASIFIKASI FRAGMEN METAGENOME”, jicon, vol. 8, no. 1, pp. 9-17, Mar. 2020.
Section
Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.