IMPLEMENTASI CASE BASE REASONING MENGGUNAKAN METODE COSINE SIMILARITY UNTUK MENDIAGNOSA PENYAKIT PADA SAPI

  • Ssainah P Faransyah(1)
    Universitas Nusa Cendana
  • Sebastianus Adi Santoso Mola(2*)
    Universitas Nusa Cendana http://orcid.org/0000-0002-1698-0758
  • Yelly Y Nabuasa(3)
    Universitas Nusa Cendana
  • (*) Corresponding Author
Keywords: Case Base Reasoning, Rough Set, Cosine Similarity, Cow Disease

Abstract

Case Based Reasoning (CBR) is a case-breaking technique based on experience in cases that have previously occurred with the highest similarity value. In this study, the authors apply CBR to diagnose cow disease. Sources of system knowledge are obtained by collecting cases from medical records on 2014, 2016, and 2017. The system uses the Rough Set method for indexing and the calculation of similarity values ​​using the Cosine Similarity method with threshold 70%. This system is able to diagnose 15 diseases based on 29 existing symptoms. The output of the system in the form of the illness experienced, the solution and the presentation of similarities with the previous case to show the truth level of possible diagnose. Based on the test of 30 cases on casebase obtained system accuracy at second part is 27% and at third part the system gets the best result using 3 fold by 33,33%. The system produces low accuracy due to the small number of cases and the scattered data in the case.

 

Downloads

Download data is not yet available.

References

[1] Badan Pusat Statistik (2015), www.bps.go.id diakses pada 5 Juli 2017
[2] Pal, S., 2004. Foundations of Soft Case-Based Reasoning. Hoboken: Wiley Interscience publication.
[3] Cahyani E. D., 2013, Sistem Deteksi Dini Diagnosa ISPA (Infeksi Saluran Pernapasan Akut) Pada Anak Dengan Metode Cosine Similarity.
[4] Triana A., Saptono R., Sulistyo E. M., -, Pemanfaatan Metode Vector Space Model dan Metode Cosine Similarity pada Fitur Deteksi Hama dan Penyakit Tanaman Padi.
[5] Nurdiana O., Jumadi, Nursantika D., 2016, Perbandingan Metode Cosine Similarity dengan Metode Jaccard Similarity Pada Aplikasi Pencarian Terjemah Al-Qur’an Dalam Bahasa Indonesia, JOIN, Volume I No. 1.
[6] Aamodt, A., Plaza, E. 1994. Case Based Reasoning: Foundation Issues Methodological Variations, and System Approaches, AI Communication Vol 7 Nr, 1 March 1994, pp 39-59.
[7] Chouchoulas, A., 1999, ” A Rough Set Approach To Text Classification”, The University Of Edinburgh.
[8] Zhiqiang, L., Werimin, S., Zhenhua, Y. (2009). Measuring Semantic Similarity between Words Using Wikipedia. IEEE. 251-255
[9] Rozas, I. R. dan Sarno, R., 2011, SiPKoKI ISO 27001: Sistem Pemilihan Kontrol Keamanan Informasi Berbasis ISO 27001, Seminar Nasional Pascasarjana XI, ITS, Surabaya, 27 Juli

PlumX Metrics

Published
2018-10-31
How to Cite
[1]
S. Faransyah, S. Mola, and Y. Nabuasa, “IMPLEMENTASI CASE BASE REASONING MENGGUNAKAN METODE COSINE SIMILARITY UNTUK MENDIAGNOSA PENYAKIT PADA SAPI”, jicon, vol. 6, no. 2, pp. 47-52, Oct. 2018.
Section
Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.