ESTIMASI KERAPATAN ENERGI ANGIN DENGAN MENGGUNAKAN ALGORITMA ANALISIS DESKRIMINASI UNTUK SUMBER ENERGI ANGIN PADA TURBIN ANGIN
Abstract
Energi angin adalah salah satu sumber energi terbarukan yang bisa dimanfaatkan di berbagai lokasi, termasuk di daerah pegunungan, dataran rendah, hingga wilayah perairan laut. Karena jumlah angin yang melimpah di Indonesia, itu adalah salah satu jenis energi listrik yang paling efisien untuk digunakan. Di sisi lain energi angin membutuhkan turbin angin untuk pengkonversian energi angin menjadi energi kinetik yang diubah menjadi energi listrik, tetapi turbin angin ini juga sangat bergantung terhadap kecepatan angin. Estimasi kerapatan energi angin diharapkan mampu untuk menentukan kelayakan atau potensi sumber energi angin pada turbin angin berdasarkan data klasifikasi kerapatan angin. Hasil menunjukkan algoritma mampu mengklasifikasikan kerapatan energi dengan akurasi 87.3%, dimana kecepatan angin berkontribusi paling signifikan (45.2%) terhadap fungsi diskriminan.
Downloads
References
[2] Frontiers in Energy Research (2020). Sustainable Energy Through Wind Speed and Power Density Analysis in Ambam, South Region of Cameroon. Frontiers in Energy Research, Volume 8.
[3] Kholiq, I., et al. (2022). Development of typical meteorological years based on quality control of datasets in Indonesia. ScienceDirect, Volume 268.
[4] Statista (2022). Wind energy capacity in Indonesia 2013-2022. Statista Energy Market Research.
[5] Rizqiawan, A., et al. (2022). Assessing the wind energy potential in provinces of West Java, Papua, and East Borneo in Indonesia. ResearchGate Publication, October 4, 2022.
[6] Hermawan, E., et al. (2023). Short-Term Wind Energy Resource Prediction Using Weather Research Forecasting Model for a Location in Indonesia. International Journal of Technology, Volume 14.
[7] Alatas, H., et al. (2021). Global estimations of wind energy potential considering seasonal air density changes. ScienceDirect Energy, Volume 215.
[8] MathWorks (2021). Standard Atmosphere Functions. MATLAB Central File Exchange, October 19, 2021.
[9] Rosenbluth, B., et al. (2019). The role of air density in wind energy assessment – A case study from Germany. ScienceDirect Energy, Volume 171.
[10] World Bank (2023). Indonesia - Wind Speed and Wind Power Potential Maps. World Bank Data Catalog.
[11] Pasaribu, T.A., et al. (2017). Assessment of Wind Energy Potential Using Weibull Distribution Function as Wind Power Plant in Medan, North Sumatra. ResearchGate Publication, January 1, 2017.
[12] Simbolon, K., et al. (2020). Evaluation of Wind Speed Potential Using Correlation Coefficient Model in Medan, North Sumatra, Indonesia. Journal of Southwest Jiaotong University, Volume 55.
[13] MathWorks (2016). Wind Resource Assessment. MATLAB Central File Exchange, September 1, 2016.
[14] Asia Wind Energy Association (2023). Indonesia Wind Energy Market Overview. AWEA Research Data.
[15] Global Wind Atlas (2023). Wind Resource Assessment for Indonesia. Technical University of Denmark.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under CC BY-SA 4.0
Edwin Suwandi(1*)









