APROKSIMASI KOMPUTASI BAYESIAN: SUATU PENGANTAR
Abstract
Approximation of Computing Bayesian has many applied in various areas. This method not necessarily calculate function of possibility that as required [by] other Bayesian method like Gibs. This very useful method in inference technique from parameters from a real models complex. This cartridge will study and mereview approximation technique of computing Bayesian and explains two approximation algorithms of computing Bayesian.
Downloads
References
J.S. Lopes dan M.A. Beaumont. ABC: A Useful Bayesian Tool for the Analysis of Population Data. Infection, Genetics and Evolution, 2009.
B. Turner dan T. Van Zandt. A Tutorial on Approximate Bayesian Computation. Journal of Mathematical Psychology. 56, 69–85, 2012.
B. Turner. Likelihood-free Bayesian Modelling. PhD Thesis. The Ohio State University, 2011.
J. Pritchard, M. T. Seielstad , A. Perez-Lezaun, and M. W. Feldman. Population Growth of Human Y Chromosomes: A Study of Y Chromosome Microsatellites. Moleculer Biology Evolutions, 1999.
P. Marjoram, J. Molitor, V. Plagnol, dan S. Tavar´e. Markov Chain Monte Carlo Without Likelihoods. Proceeding of National Academy Science, USA. 100: 15324–28, 2003.
T. Toni, D. Welch, N. Strelkowa, A. Ipsen, dan M. P. H. Stumpf. Approximate Bayesian Computation Scheme for Parameter Inference and Model Selection in Dynamical Systems. Journal of the Royal Society Interface. 6,: 187–202. doi:10.1098/rsif.2008.0172, 2009.
M. G. B. Blum dan M. Jakobsson. Deep Divergences of Human Gene Trees and Models of Human Origins. Molecular Biology and Evolution. 28(2): 889-898. doi: 10.1093/molbev/msq265, 2011.
D. M. Walker, D. Allingham, H. W. J. Lee, M. Small. Parameter Inference in Small World Network Disease Models with Approximate Bayesian Computational Methods. Physica A . 389: 540-548, 2010.
M. A. Beaumont. Approximate Bayesian Computation in Evolution and Ecology. TheAnnual Review of Ecology, Evolution, and Systematics. 41:379–406, 2010.
T. McKinley, A. R. Cook dan R. Deardon. Inference in Epidemic Models Without Likelihoods. The International Journal of Biostatistics: 5(1). doi:10.2202/1557-4679.1171, 2009.
P. D. Moral, A. Doucet·dan A. Jasra. An Adaptive Sequential Monte Carlo Method for Approximate. Statistics Computing. DOI 10.1007/s11222-011-9271-y, 2011.
S. Barthelmé dan N. Chopin. Expectation-Propagation for Likelihood-Free Inference. www.arvix.org. diakses pada tanggal 10 Mei 2013, 2013
This work is licensed under CC BY-SA 4.0