APROKSIMASI KOMPUTASI BAYESIAN: SUATU PENGANTAR

  • Bertha Selviana Djahi(1)
    Universitas Nusa Cendana
  • (*) Corresponding Author
Keywords: Approximation of Computing Bayesian, Algorithm, Estimation of Parameter

Abstract

Approximation of Computing Bayesian has many applied in various areas. This method not necessarily calculate function of possibility that as required [by] other Bayesian method like Gibs. This very  useful method in inference technique from parameters from a real models complex. This cartridge will study and mereview approximation technique of computing Bayesian and explains two approximation algorithms of computing Bayesian.

Downloads

Download data is not yet available.

Author Biography

Bertha Selviana Djahi, Universitas Nusa Cendana

Jurusan Ilmu Komputer, Fakultas Sains dan Teknik, Universitas Nusa Cendana

References

J.S. Lopes dan M.A. Beaumont. ABC: A Useful Bayesian Tool for the Analysis of Population Data. Infection, Genetics and Evolution, 2009.

B. Turner dan T. Van Zandt. A Tutorial on Approximate Bayesian Computation. Journal of Mathematical Psychology. 56, 69–85, 2012.

B. Turner. Likelihood-free Bayesian Modelling. PhD Thesis. The Ohio State University, 2011.

J. Pritchard, M. T. Seielstad , A. Perez-Lezaun, and M. W. Feldman. Population Growth of Human Y Chromosomes: A Study of Y Chromosome Microsatellites. Moleculer Biology Evolutions, 1999.

P. Marjoram, J. Molitor, V. Plagnol, dan S. Tavar´e. Markov Chain Monte Carlo Without Likelihoods. Proceeding of National Academy Science, USA. 100: 15324–28, 2003.

T. Toni, D. Welch, N. Strelkowa, A. Ipsen, dan M. P. H. Stumpf. Approximate Bayesian Computation Scheme for Parameter Inference and Model Selection in Dynamical Systems. Journal of the Royal Society Interface. 6,: 187–202. doi:10.1098/rsif.2008.0172, 2009.

M. G. B. Blum dan M. Jakobsson. Deep Divergences of Human Gene Trees and Models of Human Origins. Molecular Biology and Evolution. 28(2): 889-898. doi: 10.1093/molbev/msq265, 2011.

D. M. Walker, D. Allingham, H. W. J. Lee, M. Small. Parameter Inference in Small World Network Disease Models with Approximate Bayesian Computational Methods. Physica A . 389: 540-548, 2010.

M. A. Beaumont. Approximate Bayesian Computation in Evolution and Ecology. TheAnnual Review of Ecology, Evolution, and Systematics. 41:379–406, 2010.

T. McKinley, A. R. Cook dan R. Deardon. Inference in Epidemic Models Without Likelihoods. The International Journal of Biostatistics: 5(1). doi:10.2202/1557-4679.1171, 2009.

P. D. Moral, A. Doucet·dan A. Jasra. An Adaptive Sequential Monte Carlo Method for Approximate. Statistics Computing. DOI 10.1007/s11222-011-9271-y, 2011.

S. Barthelmé dan N. Chopin. Expectation-Propagation for Likelihood-Free Inference. www.arvix.org. diakses pada tanggal 10 Mei 2013, 2013

PlumX Metrics

Published
2022-01-29
How to Cite
[1]
B. Djahi, “APROKSIMASI KOMPUTASI BAYESIAN: SUATU PENGANTAR”, JME, vol. 1, no. 2, pp. 62 - 64, Jan. 2022.
Section
Articles