RECOGNITION OF FINGERPRINT PATTERNS WITH LOCAL BINARY PATTERN METHOD AND LEARNING VECTOR QUANTIZATION

Main Article Content

Adriana Fanggidae
Dony M Sihotang
Adnan Putra Rihi Pati

Abstract

Fingerprint is the generic structure in the form of a very detailed pattern and a sign that inherent in human beings. Many biometric systems using fingerprint as input data, because the nature of each individual is different although identical twins and do not change unless got a accident. The method used in this research is image segmentation using Otsu thresholding algorithm, feature extraction using Local Binary Pattern (LBP) algorithm and the learning method using Learning Vector Quantization (LVQ) algorithm. The used data is grayscale fingerprint image with 200x300 pixel and *.jpg extension format. The fingerprint image is composed of 25 people, each person has 6 training data and 2 test data. Experiment of training data and test data conducted for four systems, namely the system with characteristics of LBP = 8, 64, 128 and 256 and their respective uses 2 pieces of data set where data set 1 amounted to 15 people and data set 2 amounted to 25 people. The fourth experiment results show that the system is a system with a number of LBP characteristics = 128 is a system with the best combination of high system accuracy and fast learning time.

Downloads

Download data is not yet available.

Article Details

How to Cite
Fanggidae, A., Sihotang, D., & Rihi Pati, A. (2019). RECOGNITION OF FINGERPRINT PATTERNS WITH LOCAL BINARY PATTERN METHOD AND LEARNING VECTOR QUANTIZATION. J-Icon : Jurnal Komputer Dan Informatika, 7(2), 148-156. https://doi.org/10.35508/jicon.v7i2.1635
Section
Articles

References

[1] Santi R. C. N., 2008, Identifikasi Biometrik Sidik Jari dengan Metode Fraktal, Jurnal Teknologi Informasi DINAMIK, No. 1, Volume XIII, 68-72.
[2] Arifin dan Tumana O., 2011, Pengenalan Pola Sidik Jari Menggunakan Jaringan Syaraf Tiruan dengan Metode Pembelajaran Backpropagation, Jurnal Aplikasi Fisika, No. 1, Volume VII, 1-11.
[3] Kastella S. M., 2012, Simulasi Sistem Pengenalan Individu Berdasarkan Hidung Tampak Samping Menggunakan Metode Local Binary Pattern dan Jaringan Syaraf Tiruan-Learning Vector Quantization, Skripsi, Jurusan Teknik Telekomunikasi, Fakultas Teknik Elektro, Universitas Telkom, Bandung.
[4] Ranadhi D., 2006, Implementasi Learning Vector Quantization (LVQ) untuk Pengenal Pola Sidik Jari Pada Sistem Informasi Narapidana LP Wirogunan, Skripsi, Jurusan Teknik Informatika, Fakultas Teknik Industri, Universitas Islam Indonesia, Yogyakarta.
[5] Misbach I. H., 2010, Dahsyatnya Sidik Jari, Visimedia, Jakarta.
[6] Pietikäinen, M., 2010, Local Binary Patterns, Scholarpedia, No. 3, Vol. 5, 9775, http://www.scholarpedia.org/article/Local_Binary_Patterns.
[7] Widodo T. S., 2005, Sistem Neuro Fuzzy untuk Pengolahan Informasi, Pemodelan, dan Kendali, Graha Ilmu, Yogyakarta.
[8] Indrabayu dkk., 2012, Prediksi Curah Hujan dengan Jaringan Saraf Tiruan, Hasil Penelitian Fakultas Teknik, Volume VI, ISBN : 978-979-127255-0-6.
[9] Kusumadewi S., 2003, Artificial Intelligence (Teknik dan Aplikasinya), Graha Ilmu, Yogyakarta.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.