DATA MINING UNTUK KLASIFIKASI STATUS GIZI DESA DI KABUPATEN MALAKA MENGGUNAKAN METODE K-NEAREST NEIGHBOR

Main Article Content

Brigita Fahik
Bertha S Djahi
Nelci D Rumlaklak

Abstract

Classification of village status according to the number of malnourished patients is very important in anticipating malnutrition cases in a region, especially for the areas in the district of Malaka. Cases of malnutrition recorded quite a lot in the District of Malaka demanded the district government of Malaka to immediately anticipate the problem. To overcome this problem, we used k-Nearest Neighbor method to classify the status of villages in Malaka District based on the level of under-five children under the red line into three target classes: low, medium, and high. Prior to the classification process, clustering process is done using K-Means method so that all data can be divided into classes that have been determined. The data used in this study as many as 174 data taken from the year 2013-2015. The final result, after validation of clustering data obtained resemblance to the original data of 98.25%, and the results of system testing of 93.10%. Determination of the best value of k with the test data of 34 pieces and the training data of 140 pieces is at k = 7 with the average percentage of similarity of 95.53%.

Downloads

Download data is not yet available.

Article Details

How to Cite
Fahik, B., Djahi, B., & Rumlaklak, N. (2018). DATA MINING UNTUK KLASIFIKASI STATUS GIZI DESA DI KABUPATEN MALAKA MENGGUNAKAN METODE K-NEAREST NEIGHBOR. Jurnal Komputer Dan Informatika, 6(1), 1-7. https://doi.org/10.35508/jicon.v6i1.348
Section
Articles

References

[1] Agusta, Y., 2007, K-Means-Penerapan, Permasalahan dan Metode Terkait, Jurnal Sistem dan Informatika Vol.3, pp : 47-60, Denpasar, Bali.
[2] Anonim, 2013, Pembentukan Kabupaten Malaka di Provinsi Nusa Tenggara Tmur.
[3] Anonim, 2015, Buku Putih Sanitasi Kabupaten Malaka.
[4] Azis, A., 2015, Penderita Gizi Buruk di NTT Hampir 2000 balita, https://m.tempo.co/read/news/2015/06/27/173678797/hampir-2-000-balita-di-ntt-menderita-gizi-buruk, diakses 21 Mei 2016.
[5] BPS, 2014, Status Gizi Balita Menurut Kabupaten/Kota di Provinsi Nusa Tenggara Timur, http://ntt.bps.go.id/index.php/linkTabelStatis/356, diakses 23 Mei 2016.
[6] Fadilah, I., 2013, Definisi Gizi Buruk Pada Anak, Gejala, Penyebab, dan Cara Penanganannya,http://www.idmedis.com/2014/11/definisi-gizi-buruk-pada-anak-gejala.html, diakses 4 Juni 2016.
[7] Fathansyah, 1999, Basis Data, Informatika Bandung, Bandung.
[8] Fuada, N., Muljati, S., Hidayat, T., 2012, Penentuan Daerah Rawan Gizi Berdasarkan Analisis Spatial, Media Litbang Kesehatan.
[9] Gizinet, 2010, Kasus Gizi Buruk: Empat Provinsi Tak Pernah Absen, http://gizi.depkes.go.id/kasus-gizi-buruk-empat-provinsi-tak-pernah-absen, diakses 21 Mei 2016.
[10] Hermaduanti, N., Kusumadewi, S., 2008, Sistem Pendukung Keputusan Berbasis SMS Untuk Menentukan Status Gizi dengan metode k-Nearest Neighbor, Teknik Informatika Fakultas Teknologi Industri, Universitas Islam Indonesia, Yogyakarta.
[11] Huang, Z., (1998), Extension to the K-means Algorithm, for Clustering Large Datasets with Categorical Values, Data Mining and Knowledge Discovery, vol.2, hal.283-304
[12] Imandoust, S., B., Bolandraftar, M., 2013, Application of K-Nearest Neighbor (KNN) Approach for Predicting Economic Events: Theoretical Background, Vol. 3.605-610, Payame Noor University, Iran.
[13] Irdiansyah, E., 2012, Penerapan Data Mining Pada Penjualan Produk Minuman di PT. Pepsi Cola Indobeverages Menggunakan Metode Clustering, Universitas Komputer Indonesia.
[14] Krisandi, N., Prihandono, B., 2013, Algoritma k-Nearest Neighbor dalam klasifikasi data hasil produksi kelapa sawit pada PT.Minamas kecamatan Parindu, Pontianak.
[15] Larose D, T., 2006, Data Mining Methods and Models, Jhon Wiley & Sons, Inc. Hoboken New Jersey.
[16] Oetomo, B., S., D., 2002, Perencanaan & Pembangunan Sistem Informasi, Andi, Yogyakarta.
[17] Permana, B., Ukar, K., 2011, Praktis Menguasai Microsoft Access 2007/2010, PT Elex Media Komputindo, Jakarta.
[18] Rohmawati, W., N., Defianti, S., Jajuli, M., 2015, Implementasi Algoritma K-Means dalam pengklasteram mahasiswa pelamar beasiswa, Teknik Informatika Fakultas Ilmu Komputer, Universitas Singaperbangsa, Karawang.
[19] Soekirman, 2000, Ilmu Gizi dan Aplikasinya, Departemen Pendidikan Nasional, Jakarta.
[20] Swastina, L., Lareno, B., 2014, Model Penentuan Potensi Status Gizi Bermasalah Menggunakan Decision Tree, Teknik Informatika, STMIK Indonesia Banjarmasin, Banjarmasin.
[21] Supariasa, 2001, Penilaian Status Gizi, EGC, Jakarta.
[22] Tiaratuti A., S., Sudaryanto S., 2015, Implementasi Metode K-Nearest Neighbor Dalam Peramalan Penjualan Mobil Pada PT Bengawan Abadi, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Semarang.
[23] Widiarsana, O., Putra, N.W., Budiyasa, P.G.I., Bismantara, A.N.I., Mahajaya, S., N., 2011, Data Mining: Metode Clasification K-Nearest Neighbor (KNN), Teknologi Informasi, Universitas Udayana, Bali.
[24] Yuswanto, S., 2010, Boom..! Visual Studio .Net 2010 Meledak, Cerdas Pustaka Publisher, Jakarta.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.