Molecular Docking Analysis of Anti-dengue Activity of Moringa oleifera Leaves Bioactive Compounds

Analisis Molecular docking terhadap Aktivitas Anti-Dengue Senyawa Bioaktif Daun Kelor (Moringa oleifera)

  • Audrey Gracelia Riwu(1*)
    Department of Biomedicine, Medical Education Program, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, East Nusa Tenggara https://orcid.org/0000-0002-6942-3234
  • Insani Fitrahulil Jannah(2)
    Department of Biomedicine, Medical Education Program, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, East Nusa Tenggara, Indonesia
  • Katty Hendriana Priscilia Riwu(3)
    Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, West Nusa Tenggara, Indonesia
  • Maria Laurenci Fanny Permata Kale(4)
    Department of Veterinary Public Health, Bachelor of Veterinary Medicine Program, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, East Nusa Tenggara, Indonesia
  • Fhady Risckhy Loe(5)
    Departement of Animal Disease and Public Health, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Indonesia https://orcid.org/0009-0000-1969-1399
  • Halena Meldy Asa(6)
    Department of Medical Education, Faculty of Medicine and Veterinary Medicine, University of Nusa Cendana https://orcid.org/0009-0008-3120-8628
  • (*) Corresponding Author

Abstract

Background: Dengue infection is an endemic disease in various tropical regions, including Indonesia, with increasing incidence and mortality rates, and currently, no specific therapy is available. One of the potential targets for therapeutic development is the dengue virus (DENV) envelope (E) protein, which plays a crucial role in viral replication in the host.

Objective: This study aimed to explore the potential of bioactive compounds from Moringa oleifera leaves as inhibitors of the E protein through an in silico approach using molecular docking methods. Methods: A total of 17 bioactive compounds from Moringa oleifera leaf extract, based on previous studies, were obtained from the PubChem database, while the target protein structure was retrieved from the Protein Data Bank (RCSB). The drug-likeness properties of the compounds were evaluated using the SwissADME web tool. Molecular docking analysis was performed using PyRx Autodock, followed by 3D visualisation and ligand–protein interaction analysis using PyMOL and Discovery Studio 2.0.

Apigenin, chrysin, kaempferol, and quercetin exhibited more negative binding affinity values than the control compound Celgosivir (-6.2 kcal/mol), with respective values of -7.4, -7.3, -7.4, and -7.3 Results: kcal/mol. These compounds also shared key amino acid residues with the control at the active site of the envelope protein. Moreover, all four compounds fulfilled the five drug-likeness criteria, indicating good oral bioavailability.

Conclusion: Moringa oleifera leaves show potential as candidate anti-dengue agents through inhibition of the DENV envelope protein.

Keywords: Moringa oleifera, molecular docking, dengue, antiviral, envelope protein

Downloads

Download data is not yet available.

References

1. World Health Organization. Dengue and severe dengue [Internet]. WHO; 2024 [cited 2025 Apr 17]. Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
2. Kementerian Kesehatan Republik Indonesia. Waspada Penyakit di Musim Hujan [Internet]. Kemenkes RI; 2024 [cited 2025 Apr 17]. Available from: https://kemkes.go.id/id/waspada-penyakit-di-musim-hujan
3. Herman R, Ikawati HD, Nugraha AA, Agustiningsih, Sembiring MM. Genotypes of dengue virus circulate in dengue sentinel surveillance in Indonesia. Health Sci J Indones. 2016;7(2):69–74.
4. Nasar S, Rashid N, Iftikhar S. Dengue proteins with their role in pathogenesis, and strategies for developing an effective anti-dengue treatment: A review. J Med Virol. 2020;9(8):941–55. doi: 10.1002/jmv.25646.
5. Kampmann T, Yennamalli R, Campbell P, Stoermer MJ, Fairlie DP, Kobe B, et al. In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. Antiviral Res. 2009;84(3):234–41. doi: 10.1016/j.antiviral.2009.09.007.
6. Renantha RR, Liga AR, Tanugroho B, D LX, Budiyanto SLAZ, Parikesit AA. Flavonoids as potential inhibitors of dengue virus 2 (DENV2) envelope protein. J Pharm Pharmacogn Res. 2022;10(4):660–75. doi: 10.56499/jppres22.1375_10.4.660.
7. Saleh MSM, Kamisah Y. Potential medicinal plants for the treatment of dengue fever and severe acute respiratory syndrome-coronavirus. Biomolecules. 2020;11(1):42. doi: 10.3390/biom11010042.
8. Viona R, Fatimah F, Wuntu AD. Potensi daun kelor (Moringa oleifera L.) sebagai vitamin C herbal dan aplikasinya pada mie basah. Chem Progres [Internet]. 2023;16(1):79–85. Available from: https://ejournal.unsrat.ac.id/v3/index.php/chemprog/article/view/47832
9. Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. Int J Mol Sci. 2015;16(6):12791–835. doi: 10.3390/ijms160612791.
10. Pareek A, Pant M, Gupta MM, Kashania P, Ratan Y, Jain V, et al. Moringa oleifera: An updated comprehensive review of its pharmacological activities, ethnomedicinal, phytopharmaceutical formulation, clinical, phytochemical, and toxicological aspects. Int J Mol Sci. 2023;24(3):2098. doi: 10.3390/ijms24032098.
11. Abd Rani NZ, Husain K, Kumolosasi E. Moringa genus: A review of phytochemistry and pharmacology. Front Pharmacol. 2018;9:108. doi: 10.3389/fphar.2018.00108.
12. Xiong Y, Rajoka MSR, Mehwish HM, Zhang M, Liang N, Li C, et al. Virucidal activity of Moringa A from Moringa oleifera seeds against influenza A viruses by regulating TFEB. Int Immunopharmacol. 2021;95:107561. doi: 10.1016/j.intimp.2021.107561.
13. Mawaddani N, Sutiyanti E, Widyananda MH, Kharisma VD, Turista DD, Tamam MB, et al. In silico study of entry inhibitor from Moringa oleifera bioactive compounds against SARS-CoV-2 infection. Pharmacogn J. 2022;14(5):565–74.
14. Sung C, Wei Y, Watanabe S, Lee HS, Khoo YM, Fan L, et al. Extended evaluation of virological, immunological and pharmacokinetic endpoints of CELADEN: A randomized, placebo-controlled trial of celgosivir in dengue fever patients. PLoS Negl Trop Dis. 2016;10(8):e0004851. doi: 10.1371/journal.pntd.0004851.
15. Riwu AG, Nugraha J, Purwanto DA, Triyono EA. In silico analysis of anti-dengue activity of faloak (Sterculia quadrifida R. Br) stem bark compounds. J Pharm Pharmacogn Res. 2022;10(6):1006–14. doi: 10.56499/jppres22.1445_10.6.1006.
16. Kharisma VD, Widyananda MH, Ansori ANM, Nege AS, Naw SW, Nugraha AP. Tea catechin as antiviral agent via apoptosis agonist and triple inhibitor mechanism against HIV-1 infection: A bioinformatics approach. J Pharm Pharmacogn Res. 2021;9(4):435–45. doi: 10.56499/jppres21.1009_9.4.435.
17. Alsedfy MY, Ebnalwaled AA, Moustafa M, Said AH. Investigating the binding affinity, molecular dynamics, and ADMET properties of curcumin-IONPs as a mucoadhesive bioavailable oral treatment for iron deficiency anemia. Sci Rep. 2024;14(1):22027. doi: 10.1038/s41598-024-72577-8.
18. Ali S, Afzal S, Yousaf MZ, Shahid M, Amin I, Idrees M, et al. Paradoxical role of dengue virus envelope protein domain III antibodies in dengue virus infection. Crit Rev Eukaryot Gene Expr. 2020;30(3):199–206. doi: 10.1615/CritRevEukaryotGeneExpr.2020028598.
19. Lipinski CA. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337–41. doi: 10.1016/j.ddtec.2004.11.007.
20. Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem. 1999;1(1):55–68. doi: 10.1021/cc9800071.
21. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615–23. doi: 10.1021/jm020017n.
22. Egan WJ, Merz KM Jr, Baldwin JJ. Prediction of drug absorption using multivariate statistics. J Med Chem. 2000;43(21):3867–77. doi: 10.1021/jm000292e.
23. Muegge I, Heald SL, Brittelli D. Simple selection criteria for drug-like chemical matter. J Med Chem. 2001;44(12):1841–6. doi: 10.1021/jm015507e.
24. Kharisma VD, Septiadi L. Prediction of novel bioactive compound from Z. officinale as Non-nucleoside Reverse Transcriptase Inhibitors (NNRTIs) of HIV-1 through computational study. Bioinfo Biomed Res. 2018;1(2):49–55. doi: 10.11594/bbrj.01.02.05.
25. Pannindriya P, Safithri M, Tarman K. Analysis in silico of Spiruna platensus active compounds as tyrosinase inhibitors. J Pengolah Has Perikan Indones. 2021;24(1):70–7.
26. Sreelakshmi V, Raj N, Abraham A. Evaluation of the drug-like properties of kaempferol, chrysophanol and emodin and their interactions with EGFR tyrosine kinase - An in silico approach. Nat Prod Commun. 2017;12(6):915–20. doi: 10.1177/1934578X1701200621.
27. Diningrat DS, Sari AN, Harahap NS, Kusdianti. Potential of Hanjeli (Coix lacryma-jobi) essential oil in preventing SARS-CoV-2 infection via blocking the Angiotensin Converting Enzyme 2 (ACE2) receptor. J Plant Biotechnol. 2021;48(4):289–303. doi: 10.5010/JPB.2021.48.4.289.

PlumX Metrics

Published
2025-07-15
How to Cite
Riwu, A., Jannah, I., Riwu, K., Kale, M., Loe, F., & Asa, H. (2025). Molecular Docking Analysis of Anti-dengue Activity of Moringa oleifera Leaves Bioactive Compounds. Cendana Medical Journal, 12(2), 1-14. https://doi.org/10.35508/cmj.v12i2.23665

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.