Analisis Dinamika Pertumbuhan Penduduk Sleman Menggunakan Model Interpolasi Lagrange

  • Nirmatun Hanifah(1*)
    Universitas Negeri Yogyakarta
  • Angelina Nabila Azahra(2)
    Universitas Negeri Yogyakarta
  • Bayu Setiaji(3)
  • (*) Corresponding Author
Keywords: Demographic Analysis, Lagrange Interpolation, MATLAB, Population Prediction

Abstract

Population growth is a vital aspect of regional planning; however, the limited availability of census data over certain periods poses challenges for strategic decision-making. Therefore, a predictive method capable of accurately filling data gaps is essential. This study employs the Lagrange polynomial interpolation method, implemented in MATLAB, to model and predict the population of Sleman Regency from 2016 to 2045, including estimates for years beyond the available data. The analysis results indicate that the Lagrange interpolation method can generate reasonably accurate predictions and reflect a stable growth trend following the COVID-19 pandemic. The use of MATLAB facilitates calculations and visualization, thereby enhancing the effectiveness of the analysis. These findings affirm that Lagrange interpolation is an effective tool for demographic data prediction, which is crucial for supporting data-driven policymaking toward sustainable development. Based on these results, it is expected that the accuracy of regional and national development strategies can be improved in addressing future socio-economic dynamics.

Downloads

Download data is not yet available.

References

Firanto, A., & Idayani, D. (2023). Perbandingan Performa Metode Interpolasi Polinomial Newton-Gregory Maju dan Newton-Gregory Mundur dalam Mengestimasi Jumlah Penduduk di Provinsi Papua. Jurnal Matematika Sains dan Teknologi, 23(2), 106–113. https://doi.org/10.33830/jmst.v23i2.5147.2022
Hurit, R. U., & Nanga, M. Y. (2022). Penerapan Metode Interpolasi Lagrange dalam Memprediksi Jumlah Penduduk Provinsi Nusa Tenggara Timur. Math Educa Journal, 6(1), 57–62. https://doi.org/10.15548/mej.v6i1.2608
Kosasih, E. (2006). Kajian Interpolasi Dua Dimensi dalam Tabel Nilai Kritik Sebaran F Berbantuan Program Matlab. Jurnal Matematika dan Pendidikan Matematika, 1(1), 1–10. https://www.researchgate.net/publication/374051381
Krisnawati, D. (2020). Implementasi Interpolasi Lagrange untuk Prediksi Nilai Data Berpasangan dengan Menggunakan MATLAB. Seminar Nasional Dosen Universitas AMIKOM Yogyakarta, 1(1), 1–6. https://journal.amikom.id/index.php/SN/article/view/2094
Rodliyah, I. (2015). Aplikasi Interpolasi Lagrange dan Ekstrapolasi dalam Peramalan Jumlah Penduduk. Seminar Nasional Matematika dan Pendidikan Matematika UNY, 265–272. https://eprints.uny.ac.id/29810/
Sianturi, M. D., Lubis, M. C., Sinaga, G. T., & Manihuruk, J. N. (2025). Prediksi Pertumbuhan Jumlah Penduduk Indonesia Menggunakan Interpolasi Polinomial Lagrange. J-CEKI: Jurnal Cendekia Ilmiah, 4(2), 1315–1321. https://doi.org/10.56799/jceki.v4i2.6766
Sugiyono. 2018. Metode Penelitian Bisnis: Pendekatan Kuantitatif, Kualitatif, Kombinasi, Dan R&D. Bandung: Alfabeta.

PlumX Metrics

Published
2025-11-30
How to Cite
Hanifah, N., Azahra, A., & Setiaji, B. (2025). Analisis Dinamika Pertumbuhan Penduduk Sleman Menggunakan Model Interpolasi Lagrange. FRAKTAL: JURNAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA, 6(2), 137-144. https://doi.org/10.35508/fractal.v6i2.22597
Section
Articles