Karakteristik Graf Pembagi Nol Pada Gelanggang Bilangan Bulat Modulo
Abstract
Zero-divisor graph is a geometric representation of a commutative ring. Zero-divisor graph of ring R that denoted by TR, defined by a graph whose vertices are all elements of zero-divisor set of a ring R, and two distinct vertices a and b are adjacent if and only if ab=0. In this paper, we will study some of the characterizations of the zero-divisor graph of integers modulo ring ( Zn). This study aims to know some forms of zero-divisor graph of ring (Zn ) and its properties. The method that used in this paper is deductive proof, by taking some example of zero-divisor graph of integer modulo ring ( Zn), then generalized the characterization of example. The firts result is if n=p^2, with p is a odd prime number, then the zero-divisor graph of ring is a complete graph. Then the second result is if n=p1p2, with p1 and p2 are different prime numbers, then the zero-divisor graph of ring is a complete bipartite graph and the diameter is 2.
Downloads
References
Asmarani, E. Y., Syarifudin, A. G., Wardhana, I. G. A. W., & Switrayni, N. W. (2021). The Power Graph of a Dihedral Group. EIGEN MATHEMATICS JOURNAL 4(2), 80-85.
Gazir, A., & Wardhana, I. G. A. W. (2019). Subgrup Non Trivial Dari Grup Dihedral. Eigen Mathematics Journal 1(2), 73-76.
Fraleigh, J. B. (2014). A First Course in Abstract Algebra (7th ed.). United States of America: Pearson Education Limited.
Husni, M. N., Syafitri, H., Siboro, A. M., Syarifudin, A. G., Aini, Q., & Wardhana, I. G. A. W. (2022). THE HARMONIC INDEX AND THE GUTMAN INDEX OF COPRIME GRAPH OF INTEGER GROUP MODULO WITH ORDER OF PRIME POWER. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 16(3), 961-966.
Misuki, W. U., Wardhana, I. G. A. W., Switrayni, N. W., & Irwansyah. (2021, February). Some results of non-coprime graph of the dihedral group D 2 n for na prime power. In AIP Conference Proceedings (Vol. 2329, No. 1, p. 020005). AIP Publishing LLC.
Munir, Rinaldi. (2010). Matematika Diskrit. Bandung: Penerbit Informatika Bandung.
Nurhabibah, N., Syarifudin, A. G., & Wardhana, I. G. A. W. (2021). Some Results of The Coprime Graph of a Generalized Quaternion Group Q_4n. InPrime: Indonesian Journal of Pure and Applied Mathematics, 3(1), 29-33.
Nurhabibah, N., Syarifudin, A. G., Wardhana, I. G. A. W., & Aini, Q. (2021). The Intersection Graph of a Dihedral Group. EIGEN MATHEMATICS JOURNAL 4(2), 68-73.
Nazzal, K.& Ghanem, M. (2014). Some Properties of The Zero Divisor Graph of A Commutative Ring. Discussion Mathematicae General Algebra and Applications, 34(1), 167-181.
Ramdani, D. S., Wardhana, I. G. A. W., & Awanis, Z. Y. (2022). THE INTERSECTION GRAPH REPRESENTATION OF A DIHEDRAL GROUP WITH PRIME ORDER AND ITS NUMERICAL INVARIANTS. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 16(3), 1013-1020.
Syarifudin, A. G., Wardhana, I. G. A. W., Switrayni, N. W., & Aini, Q. (2021, March). The Clique Numbers and Chromatic Numbers of The Coprime Graph of a Dihedral Group. In IOP Conference Series: Materials Science and Engineering (Vol. 1115, No. 1, p. 012083). IOP Publishing.
Syarifudin, A. G., & Wardhana, I. G. A. W. (2021). Beberapa Graf Khusus Dari Grup Quaternion. Eigen Mathematics Journal, 4(1), 1-7.
Syarifudin, A. G., Malik, D. P., & Wardhana, I. G. A. W. (2021). Some characterizatsion of coprime graph of dihedral group D 2n. In Journal of Physics: Conference Series (Vol. 1722, No. 1, p. 012051). IOP Publishing.
Syarifudin, A. G., Wardhana, I. G. A. W., & Switrayni, N. W. (2020, July). The Degree, Radius, and Diameter of Coprime Graph of Dihedral Group. In Proceeding International Conference on Science (ICST) (Vol. 1, No. 1, pp. 149-154).
Wicaksono, S. A. & Soleha. (2013). Kajian Sifat-Sifat Graf Pembagi-nol dari Ring Komutatif dengan Elemen Satuan. Jurnal Sains dan Seni POMITS, 2(1), 1-5.
Copyright (c) 2022 FRAKTAL: JURNAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- Hak publikasi atas semua materi naskah jurnal yang diterbitkan/dipublikasikan dalam situs E-Journal Fraktal ini dipegang oleh dewan redaksi dengan sepengetahuan penulis (hak moral tetap milik penulis naskah).
- Ketentuan legal formal untuk akses artikel digital jurnal elektronik ini tunduk pada ketentuan lisensi Creative Commons Attribution-ShareAlike (CC BY-SA), yang berarti Jurnal Fraktal berhak menyimpan, mengalih media/format-kan, mengelola dalam bentuk pangkalan data (database), merawat, dan mempublikasikan artikel tanpa meminta izin dari Penulis selama tetap mencantumkan nama Penulis sebagai pemilik Hak Cipta.
- Naskah yang diterbitkan/dipublikasikan secara cetak dan elektronik bersifat open access untuk tujuan pendidikan, penelitian, dan perpustakaan. Selain tujuan tersebut, dewan redaksi tidak bertanggung jawab atas pelanggaran terhadap hukum hak cipta.