APPLICATION OF DATA MINING FOR PREDICTION OF FISHERY CULTIVATION HARVEST RESULTS FROM HARVEST PARTNERS USING THE SUPPORT VECTOR REGRESSION ALGORITHM
Case Study: PT. Adma Digital Solutions
Abstract
PT. Adma Digital Solusi is a company that serves as a harvest partner for cultivators in the fields of agriculture, animal husbandry and fisheries which is used for planning and controlling supply chain results. Planning and controlling PT fishery supply chain results. Adma Digital Sousi in the digital era needs to utilize various technologies and information systems. This aims to ensure that planning and controlling fish resources fulfill aspects of effectiveness and efficiency in decision making. In this research, a machine learning method will be implemented using the Support Vector Regression (SVR) algorithm to predict the harvest results of PT's fishery cultivation partners. Adma Digital Solutions. The SVR algorithm is a theory used to solve a regression classification problem using a Support Vector Machine (SVM). The SVR forecasting process uses the SVR() model by filling in the parameters, namely the kernel using polynomials, C is filled with the value 100, gamma is filled with auto, degree is filled with the value three, epsilon is filled with the value 0.1, and finally coef0 is filled with the value one. Then, using the fit function to train the model using x train and y train data to produce a MAPE error rate value of 0.12865018182566176 and an R2 value of 0.9998831470091238 with very good and accurate prediction capabilities. By knowing the estimated harvest results of aquaculture, the benefits obtained by harvest partners are adjusting production and marketing strategies to maximize profits. And can help harvest partners in managing risks, because they can prepare themselves well for situations where harvest results do not match estimates.
Downloads
References
Arfan, A., & Etp, L., “Perbandingan Algoritma Long Short-Term Memory dengan SVR Pada Prediksi Harga Saham di Indonesia,” PETIR, vol. 13, no.1, pp. 33–43. 2020, doi: https://doi.org/10.33322/petir.v13i1.858.
Dini, R., Setiawan, B. D., & Dewi, C., “Prediksi Hasil Panen Benih Tanaman Kenaf Menggunakan Metode Support Vector Regression (SVR) Pada Balai Penelitian Tanaman Pemanis dan Serat Balittas,” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, vol. 2, no. 12. Pp. 6519–6526. 2018. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/3645.
Fahrizal, A., & Nasir, M., “Pengaruh Penambahan Probiotik Dengan Dosis Berbeda Pada Pakan Terhadap Pertumbuhan Dan Rasio Konversi Pakan (Fcr) Ikan Nila (Oreochromis Niloticus),” Median, vol. 9, no. 1, pp. 69-80, Des. 2018, doi: https://doi.org/10.33506/md.v9i1.310.
Fajrin, R., “Pengembangan Sistem Informasi Geografis Berbasis Node.JS untuk Pemetaan Mesin dan Tracking Engineer dengan Pemanfaatan Geolocation pada PT IBM Indonesia,” Jurnal Informatika, vol. 11, no. 2, pp. 40-47. 2017, doi: https://doi.org/10.26555/jifo.v11i2.a6090.
Fajrul Falah, R., & Komarudin, M., “Perancangan Microservice Berbasis Rest API Pada Google Cloud Platform Menggunakan Nodejs Dan Python,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 11, no. 3s1, pp. 1103-1112. 2023, doi: https://doi.org/10.23960/jitet.v11i3s1.3506.
Fausten N, G., & Ocsa N S, P., “Implementasi Flask Pada Sistem Penentuan Minimal Order Untuk Tiap Item Barang Di Distribution Center Pada PT XYZ Berbasis Website,” Jurnal Mnemonic, vol. 5, no. 2, pp. 81–85. 2022, doi: https://doi.org/10.36040/mnemonic.v5i2.4670.
Juliastoro, W. P., Cholissodin, I., & Bachtiar, F. A., “Sistem Prediksi Hasil Produksi Udang Vaname menggunakan Algoritma Multiple Linear Regression (MLR) Kombinasi Gradient Descent (GD) dengan Apache Spark,” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, vol. 5, no. 11, pp. 4920–4928. 2021. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/10145.
Mardhika, D. A., Setiawan, B. D., & Wihandika, R. C., “Penerapan Algoritma Support Vector Regression Pada Peramalan Hasil Panen Padi Studi Kasus Kabupaten Malang,” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, vol. 3, no. 10, pp. 9402–9412. 2019. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/6438.
Maricar, M. A., “Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ,” Jurnal Sistem dan Informatika (JSI), vol. 13, no.2, pp. 36-45. 2019. [Online]. Available: https://jsi.stikom-bali.ac.id/index.php/jsi/article/view/193.
Mudatsir, M. R., & Melangi, S., “Prediksi Jumlah Produksi Ikan Asin Menggunakan Metode Regresi Linear Sederhana,” Jurnal Balok, vol.1, no. 2, pp. 118-124. 2022. [Online]. Available: https://ejurnal.unisan.ac.id/index.php/balok/article/view/143/98.
Muntafiah, I., “Analisis Pakan pada Budidaya Ikan Lele (Clarias Sp.) di Mranggen,” Jurnal Riset Sains dan Teknologi, vol. 4, no.1, pp. 35-39. 2020, doi: https://doi.org/10.30595/jrst.v4i1.6129.
Pamungkas, A., Thesiana, L., & Adiyana, K., “Implementasi Peramalan Dalam Indutrialisasi Perikanan (review),” in Prosiding SNAST 2021. 2021. [Online]. Available: https://ejournal.akprind.ac.id/index.php/snast/article/view/3336.
Parlika, R., Nisaa’, T. A., Ningrum, S. M., & Haque, B. A., “Studi Literatur Kekurangan dan Kelebihan Pengujian Black Box,” Teknomatika (Jurnal Teknologi dan Informatika), vol. 10, no. 2, pp. 131-140. 2020. [Online]. Available: https://ojs.palcomtech.ac.id/index.php/teknomatika/article/view/490.
Triyanti, R., & Shafitri, N., “Kajian Pemasaran Ikan Lele (Clarias Sp) Dalam Mendukung Industri Perikanan Budidaya (Studi Kasus di Kabupaten Boyolali, Jawa Tengah),” Jurnal Sosial Ekonomi Kelautan dan Perikanan, vol. 7, no. 2, pp. 177-191. 2012, doi: https://doi.org/10.15578/jsekp.v7i2.5684.
Triyanto, E., Sismoro, H., & Laksito, A. D., “Implementasi Algoritma Regresi Linear Berganda Untuk Memprediksi Produksi Padi Di Kabupaten Bantul,” Rabit: Jurnal Teknologi dan Sistem Informasi Univrab, vol. 4, no. 2, pp. 66–75. 2019, doi: https://doi.org/10.36341/rabit.v4i2.666.
Copyright (c) 2024 Claudia Millennia Suprapto, Wahyu Syaifullah Jauharis Saputra, Firza Prima Aditiawan
This work is licensed under a Creative Commons Attribution 4.0 International License.
The author submitting the manuscript must understand and agree that if accepted for publication, authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.