KLASIFIKASI JURUSAN MENGGUNAKAN METODE NAÏVE BAYES PADA SEKOLAH MENENGAH ATAS NEGERI (SMAN) 1 FATULEU TENGAH

  • Arrdy Hailitik(1)
    Universitas Nusa Cendana
  • Bertha S Djahi(2*)
    Universitas Nusa Cendana
  • Yelly Y Nabuasa(3)
    Universitas Nusa Cendana
  • (*) Corresponding Author
Keywords: Naïve bayes, Data mining, the major classification

Abstract

Naïve bayes is the classification method which utilizes the both probabilities and statistics to predict the future opportunity by using the last experiance. The system of major in the senior high school is the means of students directing to be more based on their interest and academic competence. The major in East SMAN 1 Fatuleu consists of the Science and Social majors. This research is using the Method of Naïve bayesto classify the student major. The data of student that is used here is the grade XI for second semester in the years of 2011 to 2015 with the 470 for the total data. For the testing proces is used 420 data (89%) as trains data and 50 data (11%) as tests data. The result of this research shows the amount of 99.31% accuracy in the process of major classification.

Downloads

Download data is not yet available.

References

[1] Anandita, E. R., 2014, Klasifikasi Tebu dengan Menggunakan Algoritma Naïve Bayes Classification pada Dinas Kehutanan dan Perkebunan Pati, Universitas Dian Nuswantoro, Semarang.
[2] Bustami, 2014, Penerapan Algoritma Naïve Bayes untuk Mengklasifikasi Data Nasabah Asuransi, Universitas Malikussaleh, Lhokseumawe.
[3] Kristanto, O., 2014, Penerapan Algoritma Klasifikasi Data Mining ID3 untuk Menentukan Penjurusan Siswa SMAN 6 Semarang, Universitas Dian Nuswantoro, Semarang.
[4] Nugroho, Y. S., 2014, Data Mining Menggunakan Algoritma Naïve Bayes Untuk Klasifikasi Kelulusan Mahasiswa Universitas Dian Nuswantoro, Universitas Dian Nuswantoro, Semarang.
[5] Rahayu, E. B., 2015, Algoritma C4.5 untuk Penentuan Jurusan Siswa SMA Negeri 3 Pati, Universitas Dian Nuswantoro, Semarang.
[6] Rosdiyansyah, S. F., 2012, Klasifikasi Posting Twitter Kemacetan Lalu Lintas Kota Bandung menggunakan Naive Bayesian Classification, Universitas Pendidikan Indonesia, Bandung.
[7] Rufaidah, A., 2015, Pengaruh Intelegensi dan Minat Siswa Terhadap Putusan Pemilihan Jurusan, Universitas Indraprasta PGRI, Jakarta Selatan.
[8] Saleh, A., 2015, Implementasi Metode Klasifasi Naïve Bayes dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga. Universitas Potensi Utama, Medan.
[9] Tefnai, M., 2016, Klasifikasi Jurusan di Sekolah Menengah Atas Negeri (SMAN) 1 Fatuleu Tengah Menggunakan Metode K-Nearest Neighbor, Universitas Nusa Cendana, Kupang.

PlumX Metrics

Published
2017-10-31
How to Cite
[1]
A. Hailitik, B. Djahi, and Y. Nabuasa, “KLASIFIKASI JURUSAN MENGGUNAKAN METODE NAÏVE BAYES PADA SEKOLAH MENENGAH ATAS NEGERI (SMAN) 1 FATULEU TENGAH”, jicon, vol. 5, no. 2, pp. 21-27, Oct. 2017.
Section
Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.